Home
Class 12
MATHS
If log(sqrt8) b = 3 1/3, then find the ...

If ` log_(sqrt8) b = 3 1/3`, then find the value of b.

Text Solution

Verified by Experts

The correct Answer is:
32

` log_(sqrt8) b = 3 1/3`
` rArr b = (sqrt8)^(10/3) = 2^(5) = 32`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If a (2 + sqrt3) = b ( 2-sqrt3) =1 then find the value of 1/(a^(2) +1) + 1/(b^2 +1)

If (2a - 3b)/(2a+3b) = 1/3 , then find the value of (2a^(3) - 3b^(3))/(2a^(3) + 3b^(3)) .

If sqrt(3)+i=(a+i b)(c+i d) , then find the value of tan^(-1)(b//a)+tan^(-1)(d//c)

If a - b = - 1 then find the value of (a^(3)-b^(3)+3ab+1)

If a = (sqrt5 + 1)/(sqrt5 + 1) and b = (sqrt5 -1)/(sqrt5 + 1) , then find the value of (a) (a^(2) + ab + b^(2))/(a^(2) - ab + b^(2)) (b) ((a -b)^(3))/((a + b)^(3)) (c) (3a^(2) + 5ab + b^(2))/(3a^(2) - 5ab + b^(2)) (d) (a^(3) + b^(3))/(a^(3) - b^(3))

If a + b = sqrt5 and a -b = sqrt3 , then the value of a^(2) + b^(2) is

If the function f(x)=x^3-6x^2+a x+b defined on [1,3] satisfies Rolles theorem for c=(2sqrt(3)+1)/(sqrt(3) then find the value of aa n db

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot