Home
Class 12
MATHS
Prove that log(7) log(7)sqrt(7sqrt((7sq...

Prove that ` log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2`.

Text Solution

Verified by Experts

`log_(7) log_(7) sqrt(7sqrt((7sqrt7))) = log_(7) log_(7) 7^(1/2+1/4+1/8)`
` = log_(7) (1/2+1/4+1/8)`
` = log_(7) (7/8)`
` = 1- log_(7) 8`
` = 1-3 log_(7) 2`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Prove that log_(7)sqrt(7sqrt(7sqrt(7....................oo))) = 1

Prove that log_5^7 < sqrt2 .

Prove that log_(2)log_(2)log_(4)256+2log_(sqrt2)2=5

Solve : (log_(2)(x-4)+1)/(log_(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1 .

Prove that : (vii) log_(sqrt a)b.log_(sqrt(b))c.log_(sqrt(c ))a = 8 .

log_sqrt(7)(49) =

Show that log_(3)log_(2)log_(sqrt3)81 = 1

The solution of the equation log_(101)log_(7)(sqrt(x+7)+sqrt(x))=0 is -

If x+y = z , then prove that 1/(log_((sqrt(z)-sqrt(y)))(x)) + 1/(log_((sqrt(z)+sqrt(y)))(x)) = 1 .

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5