Home
Class 12
MATHS
Find the sum of the squares of all the r...

Find the sum of the squares of all the real solution of the equation `2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3`

Text Solution

Verified by Experts

The correct Answer is:
` x= sqrt3`

`2 log_(2+sqrt3)(sqrt(x^(2)+1+x))+ log_(2-sqrt3)(sqrt(x^(2)+1-x)) = 3`
` rArr 2 log_(2+sqrt3)(sqrt(x^(2)+1+x))+log_((2+sqrt3)^(-1))(sqrt(x^(2) + 1)-x)=3`
` rArr 2 log_(2+sqrt3)(sqrt(x^(2)+1+x))-log_(2+sqrt3)(sqrt(x^(2) + 1)-x)=3`
` rArr log_(2+sqrt3).((sqrt(x^(2)+1)+x)^(2))/((sqrt(x^(2)+1)+x)) = 3`
` rArr log_(2+sqrt3)(sqrt(x^(2)+1)+x)^(3)=3`
` rArr (sqrt(x^(2)+1)+x)^(3) = (2+sqrt3)^(3)`
` rArr (sqrt(x^(2)+1)+x)^(3) = (2+sqrt3)^(3)`
` rArr sqrt(x^(2)+1)+x = 2 + sqrt3`
` rArr x = sqrt3`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the principal solutions of the equation six x = (sqrt3)/(2).

For real solution of equation 3sqrt(x+3p+1)-3sqrt(x)=1 , we have

Number of solutions of the equation (1)/(2)log_(sqrt(3))((x+1)/(x+5))+log_(9)(x+5)^(2)=1 is -

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +2) + cos^(-1) sqrt(4x-x^2 - 3) = pi is

The number of solutions of the equation sin((pix)/(2sqrt3))=x^2-2sqrt3x+4 is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The number of real solutions of the equation 2sin^-1sqrt((x^2-x+1))+cos^-1sqrt((x^2-x))=(3pi)/2

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is________

The number of roots of the equation (log)_(3sqrt("x"))x+(log)_(3x)sqrt(x)=0 is

The sum of the roots of the quadratic equation (2-sqrt3)x^(2)+x+1=0 is _______ .