Home
Class 12
MATHS
Consider equations x^(log(y)x) = 2 and ...

Consider equations ` x^(log_(y)x) = 2 and y^(log_(x)y) = 16`.
The value of x is (a) `2^(root(3)2)` (b) ` 2^(root(3)4)` (c) ` 2^(root(3)64)` (d) ` 2 root(3)256)`

A

`2^(root(3)2)`

B

` 2^(root(3)4)`

C

` 2^(root(3)64)`

D

` 2 root(3)256)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let ` log_(y) x = 1`
Then ` x = y^(t)` …(1)
Now, ` x^(log_(y) x) =2` becomes
` x^(t) = 2`
`rArr x = 2^(1//t)` …(2)
And `y^(log_(x)y) = 16` becomes
` y^(1//t) = 2^(4)`
` rArr y = 2^(4//t)` ….(3)
Putting the values of x and y in (1), we get
` 2^(1//t) = 2^(4t^(2))`
` rArr 4t^(3) = 1`
` :. t = (1/4)^(1//3)` ....(4)
Using (4) and (2), we get ` x = (2)^((4)^(1//3)) = 2^(root(3)4)`
Using (4) and (3), we get ` y = (2)^((4)^(2//3)) = 2^(root(3)16)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Numerical Value Type|20 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .

The value of lim_(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

If log_(3)x + log_(3)y =2 + log_(3)2 and log_(3)(x+y) =2 , then

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

Consider the system of equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9 . The value of 1/y lies in the interval

The value of underset(xrarr1)(lim)(root(2)x-root4x)/(root3x-root2x) is

Evaluate : underset(xrarr2)"lim"(2-sqrt(2+x))/(root(3)(2)-root(3)(4-x))

Simplify root(3)(a^(-2)).b xx root(3)(b^(-2)).c root(3)(c^(-2)).a .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Simplify : (i) log_(1/(sqrtx) )(y) xx log_(1/(root(3)(y)))(z) xx log_(1/(root(4)(z)))(x)