Home
Class 12
MATHS
2^((sqrt(loga(ab)^(1//4)+logb(ab)^(1//4)...

`2^((sqrt(log_a(ab)^(1//4)+log_b(ab)^(1//4))-sqrt(log_a(b/a)^(1//4)+log_b(a/b)^(1//4))) sqrt(log_a(b))` =

A

1

B

2

C

` 2^(log_(a) b)`

D

` 2 ^(log_(b)a)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have
` E= 2^((sqrt(log_(a)root(4)(ab)+log_(b)root(4)(ab))-sqrt(log _(a)root(4)(b/a+log_(b)root(4)(a/b)))) sqrt(log_(a)b))`
` = 2^(1/2(sqrt(log_(a)ab+log_(b)ab-)sqrt(log_(a)b//a+log_(b)a//b))sqrt(log_(a)b))`
` = 2^(1/2(sqrt(2+log_(a)b+log_(b)a)-sqrt(log_(a)b+log_(b)a - 2))sqrt(log_(a)b))`
` = 2^(1/2(sqrt((log_(a)b)^(2)+2log_(a)b+1)-sqrt((log_(a)b)^(2)-2log_(a)b+1))`
` = 2^(1/2(sqrt((log_(a)b+1)^(2))-sqrt((log_(a)b-1)^(2)))`
` =2^(1/2(|log_(a)b+1|-|log_(a)b-1|)`
Case I:
` bgea gt1`
` rArr log_(a) b ge log_(a) a`
` rArr log_(a) b ge 1`
` rArrE=2^(1/2(log_(a)b+1-log_(a)b+1))=2`
Case II:
` 1 lt b lt a`
` rArr 0 lt log_(a) b lt log_(a) a`
` rArr 0 lt log_(a) b lt 1`
` rArr E = 2^(1/2(log_(a)b+1-1+log_(a)b))`
` = 2^(1//2.(2log_(a)b))`
` = 2 ^(log_(a)b)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Numerical Value Type|20 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Prove log_(b) 1=0

Prove log_(b)b = 1

Show that (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c )ab+1)=1

If log_a(ab)=x then log_b(ab) is equals to

Show that a^(log_(a^2)^(x))xxb^(log_(b^2)^(y))xxc^(log_(c^2)^(z))=sqrt(xyz)

int_(a)^(b)(logx)/(x)dx=(1)/(2)log(ab)log((b)/(a))

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

Prove that : (viii) (log_(a)x)/(log_(ab)x) = 1+log_(a)b .

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)