Home
Class 12
MATHS
Find the angel between the following ...

Find the angel between the following pair of lines: ` vec r=2 hat i-5 hat j+ hat k+lambda(3 hat i+2 hat j+6 hat k)a n d vec r=7 hat i-6 hat k+mu( hat i+2 hat j+2 hat k)` `x/2=y/2=z/1a n d(x-5)/4=(y-2)/1=(z-3)/8`

Text Solution

Verified by Experts

i. The given lines are parallel to the vectors `vec(b_(1))=3hati+2hatj+6hatk and vec(b_(2))=hati+2hatj+2hatk`, respectively. If `theta` is the angle between the given pair of lines, then
`" "costheta=(vec(b_(1))*vec(b_(2)))/(|vec(b_(1))||vec(b_(2))|)=((3)(1)+(2)(2)+(6)(2))/(sqrt(3^(2)+2^(2)+6^(2))sqrt(1^(2)+2^(2)+2^(2)))=(19)/(7xx3)`
`therefore" "theta=cos^(-1)((19)/(21))`
ii. The given lines are parallel to the vectors `vec(b_(1))=2hati+2hatj+hatk and vec(b_(2))=4hati+hatj+8hatk`, respectively. If `theta` is the angle between the given pair of lines, then
`" "costheta=(vec(b_(1))*vec(b_(2)))/(|vec(b_(1))||vec(b_(2))|)=((2)(4)+(2)(1)+(1)(8))/(sqrt(2^(2)+2^(2)+1^(2))sqrt(4^(2)+1^(2)+8^(2)))=(18)/(3xx9)=(2)/(3)`
`therefore " "theta=cos^(-1) ((2)/(3))`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.2|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the lines vec r=3 hat i+2 hat j-4 hat k+lambda( hat i+2 hat j+2 hat k) a n d vec r=(5 hat j-2 hat k)+mu(3 hat i+2 hat j+6 hat k)dot

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r . dot(3 hat i- hat j+ hat k)=4.

Find the shortest distance between lines vec r=( hat i+2 hat j+ hat k)+lambda(hat i- hat j+hat k)a n d vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)dot

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot(( hat i+5 hat j+ hat k))=5.

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

Find the vector equation of the following planes in Cartesian form: vec r= hat i- hat j+lambda( hat i+ hat j+ hat k)+mu( hat i-2 hat j+3 hat k)dot

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

if vec a= 5 hat i -hat j -3 hat k and vec b=hat i+3 hat j - 5 hat k , Find vec a . vec b =?

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot