Home
Class 12
MATHS
Find the condition if lines x=a y+b ,z=c...

Find the condition if lines `x=a y+b ,z=c y+da n dx=a^(prime)y+b^(prime), z=c^(prime)y+d '` are perpendicular.

Text Solution

Verified by Experts

The equations of straight lines can be rewritten as
`" "x=ay+b, z=cy+drArr(x-b)/(a)=(y-0)/(1)=(z-d)/(c)`
and `" "x=a'y+b', z=c'y+d'rArr(x-b')/(a')=(y-0)/(1)=(z-d')/(c')`
The above lines are perpendicular if `aa'+1*1+c*c'=0`.
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.2|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Show that the condition for the lines x= a_1z+b_1,y = c_1z+d_1 and x = a_2z+b_2, y = c_2z+ d_2 be perpendicular is a_1a_2+c_1c_2=0

If the lines x=a_(1)y+b_(1),z=c_(1)y+d_(1) and x=a_(2)y+b_(2),z=c_(2)y+d_(2) are perpendicular, prove that, 1+a_(1)a_(2)+c_(1)c_(2)=0 .

If the quadrilateral formed by the lines a x+b y+c=0,a^(prime)x+b^(prime)y+c=0,a x+b y+c^(prime)=0,a^(prime)x+b^(prime)y+c^(prime) =0 has perpendicular diagonals, then (a) b^2+c^2=b^('2)+c^('2) (b) c^2+a^2=c^('2)+a^('2) (c) a^2+b^2=a^('2)+b^('2) (d) none of these

The condition that one of the straight lines given by the equation a x^2+2h x y+b y^2=0 may coincide with one of those given by the equation a^(prime)x^2+2h^(prime)x y+b^(prime)y^2=0 is (a b^(prime)-a^(prime)b)^2=4(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (a b^(prime)-a^(prime)b)^2=(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (h a^(prime)-h^(prime)a)^2=4(a b^(prime)-a^(prime)b)(b h^(prime)-b^(prime)h) (b h^(prime)-b^(prime)h)^2=4(a b^(prime)-a^(prime)b)(h a^(prime)-h^(prime)a)

Let f be a continuous, differentiable, and bijective function. If the tangent to y=f(x) a tx=a is also the normal to y=f(x) a tx=b , then there exists at least one c in (a , b) such that (a)f^(prime)(c)=0 (b) f^(prime)(c)>0 (c) f^(prime)(c)<0 (d) none of these

A parallelepiped S has base points A ,B ,Ca n dD and upper face points A^(prime),B^(prime),C^(prime),a n dD ' . The parallelepiped is compressed by upper face A ' B ' C ' D ' to form a new parallepiped T having upper face points A^(prime prime),B^(prime prime),C^(prime prime) and D^(prime prime) . The volume of parallelepiped T is 90 percent of the volume of parallelepiped Sdot Prove that the locus of A^(prime prime) is a plane.

The line A x+B y+C=0 cuts the circle x^2+y^2+a x+b y+c=0 at Pa n dQ . The line A^(prime)x+B^(prime)x+C^(prime)=0 cuts the circle x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0 at Ra n dSdot If P ,Q ,R , and S are concyclic, then show that |a-a ' b-b ' c-c ' A B C A ' B ' C '|=0

If (a x^2+b x+c)y+(a^(prime)x^2+b^(prime)x+c^(prime))=0 and x is a rational function of y , then prove that (a c^(prime)-a^(prime)c)^2=(a b^(prime)-a^(prime)b)xx(b c^(prime)-b^(prime)c)dot

Let y=f(x) be a parabola, having its axis parallel to the y-axis, which is touched by the line y=x at x=1. Then, (a) 2f(0)=1-f^(prime)(0) (b) f(0)+f^(prime)(0)+f(0)=1 (c) f^(prime)(1)=1 (d) f^(prime)(0)=f^(prime)(1)

Find the condition that the expressions a x^2-b x y+c y^2a n da_1x^2+b_1x y+c_1y^2 may have factors y-m xa n dm y-x , respectively.