Home
Class 12
MATHS
Show that the line of intersection of ...

Show that the line of intersection of the planes ` vec r.( hat i+2 hat j+3 hat k)=0` and `vec r.(3 hat i+2 hat j+ hat k)=0` is equally inclined to `ia n dkdot` Also find the angle it makes with `jdot`

Text Solution

Verified by Experts

The line of intersection of the two planes will be perpendicular to the normals to the planes. Hence, it is parallel to the vector `(hati+2hatj+3hatk)xx(3hati+2hatj+hatk)=(-4hati+8hatj-4hatk)`. Now,
`" "(-4hati+8hatj-4hatk)*hati=-4 and (-4hati+8hatj-4hatk)*hatk=-4`
Hence, the line is equally inclined to `hati and hatk`. Also,
`" "((-4hati+8hatj-4hatk))/(sqrt(16+64+16))*hatj=(8)/(sqrt(96))=sqrt((2)/(3))`
If `theta` is the required angle, then `costheta=sqrt((2)/(3)) or theta = cos^(-1) sqrt((2)/(3))`.
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.2|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Find the equation the plane which contain the line of intersection of the planes vec rdot( hat i+2 hat j+3 hat k)-4=0a n d vec rdot(2 hat i+ hat j- hat k)+5=0 and which is perpendicular to the plane vec r(5 hat i+3 hat j-6 hat k)+8=0 .

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

Find the unit vector perpendicular to the plane vec r.(2 hat i+ hat j+2 hat k)=5.

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

find the angle between the vectors vec a= 3 hat i +2 hat k and vec b = 2 hat i -2 hat j + 4 hat k

if vec a= 5 hat i -hat j -3 hat k and vec b=hat i+3 hat j - 5 hat k , Find vec a . vec b =?

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =