Home
Class 12
MATHS
If the line x=y=z intersect the line sin...

If the line `x=y=z` intersect the line `sin Adotx+sin Bdoty+sin Cdotz=2d^2,sin2Adotx+sin2Bdoty+sin2Cdotz=d^2,` then find the value of `sinA/2dotsinB/2dotsinC/2w h e r eA ,B ,C` are the angles of a triangle.

Text Solution

Verified by Experts

Any point on the line `x = y =z` is `(lamda, lamda, lamda)`
This point lies on the planes
`" "sinA*x+sinB*y+sinC*z=2d^(2)`
and `" "sin2A*x+sin2B*y+sin 2C*z=d^(2)`
`therefore" "sinA lamda+sin Blamda+sinC lamda = 2d^(2)`
and `" "sin2A lamda+sin 2B lamda +sin 2C lamda =d^(2)`
Eliminating `d^(2)`, we get
`" "sinA+sinB+sinC=2(sin2A+2sin2B+sin2C)`
or `" "4cos""(A)/(2) cos ""(B)/(2) cos""(C)/(2)=8sin A sin B sin C`
or `" "sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)=(1)/(16)`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.1|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 3.2|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

Find the minimum values of: "sin" ^(2) (A)/(2)+"sin"^(2)(B)/(2) +"sin" (C)/(2) where A,B,C are the angles of a triangle.

If the incircle of the triangle ABC passes through its circumcenter, then find the value of 4 sin.(A)/(2) sin.(B)/(2) sin.(C)/(2)

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

If in triangle A B C ,/_C=45^0 then find the range of the values of sin^2A+sin^2Bdot

If cos(A+B+C)=cosAcosBcosC , then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)

Prove that in a A B C ,sin^2A+sin^2B+sin^2C<=9/4dot

If in a triangle ABC, sin^2A+sin^2B+sin^2C=2 then the triangle is always

In quadrilateral A B C D , if sin((A+B)/2)cos((A-B)/2)+"sin"((C+D)/2)cos((C-D)/2)=2 then find the value of sinA/2sinB/2sinC/2sinD/2dot

Find the derivatives w.r.t. x : sin x sin 2x sin 3x

ABC is a right angled triangle, then the value of sin^(2)A + sin^(2)B + sin^(2)C will be-