Home
Class 12
MATHS
The reflection of the point vec a in ...

The reflection of the point ` vec a` in the plane ` vec rdot vec n=q` is a. ` vec a+(( vec q- vec adot vec n))/(| vec n|)` b. ` vec a+2((( vec q- vec adot vec n))/(| vec n|^2)) vec n` c. ` vec a+(2( vec q+ vec adot vec n))/(| vec n|^2) vec n` d. none of these

A

`veca+((vecq-veca.vecn))/(|vecn|)`

B

`veca+2(((vecq-veca.vecn))/(|vecn|^(2)))vecn`

C

`veca+(2(vecq-veca.vecn))/(|vecn|)vecn`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
b

Given plane is `vecr.vecn=q`
Let the image of `A(veca)` in the plane be `B(vecb)`.

Equation of AC is `vecr=veca+lamdavecn`
(`because` AC is normal to the plane) (ii)
Solving (i) and (ii), we get
`(veca+lamdavecn).vecn=q`
or `lamda=(q-veca.vecn)/(|vecn|^(2)).vecn`
But `vec(OC)=(veca+vecb)/(2)`
`becauseveca+((q-veca.vecn)vecn)/(|vecn|^(2))=(veca+vecb)/(2)`
or `vecb=veca+2((q-veca.vecn)/(|vecn|^(2)))`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

The projection of point P( vec p) on the plane vec r. vec n=q is ( vec s) , then a. vec s=((q- vec p. vec n) vec n)/(| vec n|^2) b. vec s=p+((q- vec p. vec n) vec n)/(| vec n|^2) c. vec s=p-(( vec p. vec n) vec n)/(| vec n|^2) d. vec s=p-((q- vec p. vec n) vec n)/(| vec n|^2)

Distance of the point P( vec p) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | vec pdot vec n| b. (| vec pxx vec n|)/(| vec n|) c. (| vec pdot vec n|)/(| vec n|) d. none of these

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

Value of [ vec axx vec b , vec axx vec c , vec d] is always equal to a. ( vec adot vec d)[ vec a vec b vec c] b. ( vec adot vec c)[ vec a vec b vec d] c. ( vec adot vec b)[ vec a vec b vec d] d. none of these

If vec a . vec b=beta and vec axx vec b= vec c ,then vec b is ((beta vec a- vec axx vec c))/(| vec a|^2) b. ((beta vec a+ vec axx vec c))/(| vec a|^2) c. ((beta vec c- vec axx vec c))/(| vec a|^2) d. ((beta vec a+ vec axx vec c))/(| vec a|^2)

The equation of a line passing through the point vec a parallel to the plane vec r. vec n=q and perpendicular to the line vec r= vec b+t vec c is a. vec r= vec a+lambda( vec nxx vec c) b. ( vec r- vec a)xx( vec nxx vec c) c. vec r= vec b+lambda( vec nxx vec c) d. none of these

If vec a is parallel to vec bxx vec c , then ( vec axx vec b) . ( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c dot vec a) vec c)/(1+ vec c dot vec c) b. vec x=( vec cxx vec b+ vec b+( vec c dot vec a) vec c)/(1+ vec c dot vec c) c. vec y=( vec axx vec c+ vec b+( vec c dot vec b) vec c)/(1+ vec c dot vec c) d. none of these

CENGAGE PUBLICATION-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. Shortest distance between the lines (x-1)/1=(y-1)/1=(z-1)/1a n d(x-...

    Text Solution

    |

  2. Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | v...

    Text Solution

    |

  3. The reflection of the point vec a in the plane vec rdot vec n=q is...

    Text Solution

    |

  4. Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec ...

    Text Solution

    |

  5. If a line makes an angel of pi/4 with the positive direction of eac...

    Text Solution

    |

  6. The ratio in which the plane vec rdot (vec i-2 vec j+3 vec k )=17 d...

    Text Solution

    |

  7. the image of the point (-1,3,4) in the plane x-2y=0 a.(-(17)/(3),(19)/...

    Text Solution

    |

  8. The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambd...

    Text Solution

    |

  9. Column I, Column II A tx=1,f(x)={logx ,x<1 2x-x^2, xgeq1 , p. is ...

    Text Solution

    |

  10. The length of the perpendicular drawn from (1,2,3) to the line (x-6...

    Text Solution

    |

  11. If the angle theta between the line (x+1)/1=(y-1)/2=(z-2)/2 and the pl...

    Text Solution

    |

  12. The intersection of the spheres x^2+y^2+z^2+7x-2y-z=13a n dx^2+y^2+z...

    Text Solution

    |

  13. If a plane cuts off intercepts OA = a, OB = b, OC = c from the coordi...

    Text Solution

    |

  14. A line makes an angel theta with each of the x-and z-axes. If the a...

    Text Solution

    |

  15. The shortest distance from the plane 12 x+y+3z=327 to the sphere x^...

    Text Solution

    |

  16. A tetrahedron has vertices O(0,0,0),A(1,2,1),B(2,1,3),a n dC(-1,1,2), ...

    Text Solution

    |

  17. The radius of the circle in which the sphere x^(2)+y^(2)+z^(2)+2x-2y-4...

    Text Solution

    |

  18. The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are c...

    Text Solution

    |

  19. The point of intersection of the lines (x-5)/3=(y-7)/(-1)=(z+2)/1a ...

    Text Solution

    |

  20. Two systems of rectangular axes have the same origin. If a plane cu...

    Text Solution

    |