Home
Class 12
MATHS
L1a n dL2 and two lines whose vector equ...

`L_1a n dL_2` and two lines whose vector equations are `L_1: vec r=lambda((costheta+sqrt(3)) hat i+(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k)` `L_2: vec r=mu(a hat i+b hat j+c hat k)` , where `lambdaa n dmu` are scalars and `alpha` is the acute angel between `L_1a n dL_2dot` If the angel `alpha` is independent of `theta,` then the value of `alpha` is a. `pi/6` b. `pi/4` c. `pi/3` d. `pi/2`

A

`(pi)/(6)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
a

Both the lines pass through the origin. Line `L_(1)` is parallel to the vector `vec(V_1)`
`" "vec(V_1)= (costheta+sqrt(3))hati+ (sqrt2 sin theta)hatj + (costheta-sqrt3)hatk`
and `L_(2)` is parallel to the vector `vec(V_2)`
`" "vec(V_2) = ahati+bhatj+chatk`
`therefore " "cosalpha= (vec(V_1)*vec(V_2))/(|vec(V_1)||vec(V_2)|)`
`= (a(costheta+ sqrt3)+ (bsqrt2)sintheta+c(costheta-sqrt3))/(sqrt(a^(2)+b^(2)+c^(2))sqrt((costheta+sqrt3)^(2)+ 2sin^(2)theta+ (costheta-sqrt3)^(2)))`
`((a+c)costheta+bsqrt2sintheta+ (a-c)sqrt3)/(sqrt(a^(2)+b^(2)+c^(2))sqrt(2+6))`
For `cos alpha` to be independent of `theta`, we get
`" "a+c=0 and b=0`
`therefore " "cosalpha = (2asqrt3)/(asqrt2 2sqrt2)= (sqrt3)/(2)`
or `" "alpha= (pi)/(6)`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

L_1a n dL_2 are two lines whose vector equations are L_1: vec r=lambda((costheta+sqrt(3)) hat i+(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k) L_2: vec r=mu(a hat i+b hat j+c hat k) , where lambdaa n dmu are scalars and alpha is the acute angel between L_1a n dL_2dot If the angel alpha is independent of theta, then the value of alpha is a. pi/6 b. pi/4 c. pi/3 d. pi/2

Find the shortest distance between the two lines whose vector equations are : vec(r)=(1-t)hat(i)+(t-2)hat(j)+(3-t)hat(k), vec(r)=(s+1)hat(i)+(2s-1)hat(j)-(2s+1)hat(k)

Find the vector equation of the line passing through (1,2,3) and parallel to the planes vec r.( hat i- hat j+2 hat k)=5a n d vec r.(3 hat i+ hat j+ hat k)=6.

If the vectors vec(a) = 2 hat (i) - lambda hat(j) + 3 hat (k), vec(b) = 3 hat (i) + 2 hat (k) - mu hat (k) and vec(c ) = hat (i) + hat (j) + hat (k) are coplanar , find mu in terms of lambda

The scalar projection of vec(a) = 2 hat (i) - 3hat(j) + hat (k) on vec (b) = 3 hat(i) - 6 hat (j) - 2 hat (k)

Show that the plane whose vector equation is vec r . (hat i +2 hat j −hat k ) =3 contains the line vec r=( hat i+ hat j)+lambda(2 hat i+ hat j+4 hat k)dot ​

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat k and vec c=lambda hat i+ hat j+2 hat k are coplanar, then find the value of (lambda-4) .

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find angle between vec(a) and vec(b)

In each of the following show that the given vectors are coplanar: vec(a) = hat (i) + hat (j) - 6 hat (k) , vec(b) = hat (i) + 3 hat (j) + 4 hat (k) , vec(c) = 2 hat (i) + 5 hat (j) + 3 hat (k)

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

CENGAGE PUBLICATION-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. Find the following are equations for the plane passing through the p...

    Text Solution

    |

  2. Given vecalpha=3 hat i+ hat j+2 hat ka n d vecbeta= hat i-2 hat j-4 h...

    Text Solution

    |

  3. L1a n dL2 and two lines whose vector equations are L1: vec r=lambda((c...

    Text Solution

    |

  4. The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a...

    Text Solution

    |

  5. The line through hati+3hatj+2hatk and perpendicular to the lines vecr=...

    Text Solution

    |

  6. The equation of the plane passing through lines (x-4)/1=(y-3)/1=(z-...

    Text Solution

    |

  7. The three planes 4y+6z=5,2x+3y+5z=5a n d6x+5y+9z=10 a. meet in a poi...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Equation of the pane passing through the points (2,2,1)a n d(9,3,6)...

    Text Solution

    |

  10. Value of lambda such that the line (x-1)/2=(y-1)/3=(z-1)/lambda is | t...

    Text Solution

    |

  11. The equation of the plane through the intersection of the planes x+...

    Text Solution

    |

  12. The plane 4x+7y+4z+81=0 is rotated through a right angle about its l...

    Text Solution

    |

  13. The vector equation of the plane passing through the origin and the ...

    Text Solution

    |

  14. The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxve...

    Text Solution

    |

  15. The projection of the line (x+1)/(-1)=y/2=(z-1)/3 on the plane x-2y+z=...

    Text Solution

    |

  16. The direction cosines of a line satisfy the relations lambda(l+m)=n...

    Text Solution

    |

  17. The intercepts made on the axes by the plane the which bisects the ...

    Text Solution

    |

  18. Find the angle between the lines whose direction cosines are given by ...

    Text Solution

    |

  19. A sphere of constant radius 2k passes through the origin and meets t...

    Text Solution

    |

  20. A plane passes through a fixed point (a ,b ,c)dot The locus of the ...

    Text Solution

    |