Home
Class 12
MATHS
The vector equation of the plane passi...

The vector equation of the plane passing through the origin and the line of intersection of the planes ` vec rdot vec a=lambdaa n d vec rdot vec b=mu` is (a) ` vec rdot(lambda vec a-mu vec b)=0` (b) ` vec rdot(lambda vec b-mu vec a)=0` (c) ` vec rdot(lambda vec a+mu vec b)=0` (d) ` vec rdot(lambda vec b+mu vec a)=0`

A

`vecr.(lamdaveca-muvecb)=0`

B

`vecr.(lamdavecb-muveca)=0`

C

`vecr.(lamdaveca+muvecb)=0`

D

`vecr.(lamdavecb+muveca)=0`

Text Solution

Verified by Experts

The correct Answer is:
b

The equation of a plane through the line of intersection of the planes `vecr*veca=lamda and vecr*vecb= mu` is
`" "(vecr*veca-lamda)+k(vecr*vecb-mu)=0`
or `" "vecr*(veca+kvecb)= lamda+kmu" "`(i)
This passes through the origin, therefore
`" "vec0(veca+k vecb) = lamda+ muk or k= (-lamda)/(mu)`
Putting the value of k in (i), we get the equation of the required plane as
`" "vecr*(muveca-lamdavecb)= 0 or vecr*(lamda vecb-mu veca)=0`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise REASONING TYPE|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise SUBJECTIVE TYPE|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

The vector equation of the plane passing through the origin and the line of intersection of the planes vec r. vec a = lambda and vec r. vec b =mu is __

The equation of a line passing through the point vec a parallel to the plane vec r. vec n=q and perpendicular to the line vec r= vec b+t vec c is a. vec r= vec a+lambda( vec nxx vec c) b. ( vec r- vec a)xx( vec nxx vec c) c. vec r= vec b+lambda( vec nxx vec c) d. none of these

Find the equation of a straight line in the plane vec r* vec n=d which is parallel to vec r= vec a+lambda vec b and passes through the foot of the perpendicular drawn from point P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot a. vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b b. vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b c. vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b d. vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec bdot vec c= vec adot vec d b. vec adot vec b= vec c dot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec c dot vec d=0

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

The lines vec r= vec a+lambda( vec bxx vec c)a n d vec r= vec b+mu( vec cxx vec a) will intersect if a. vec axx vec c= vec bxx vec c b. vec adot vec c= vec bdot vec c c. bxx vec a= vec cxx vec a d. none of these

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | vec pdot vec n| b. (| vec pxx vec n|)/(| vec n|) c. (| vec pdot vec n|)/(| vec n|) d. none of these

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

CENGAGE PUBLICATION-THREE-DIMENSIONAL GEOMETRY -SINGLE CORRECT ANSWER TYPE
  1. The three planes 4y+6z=5,2x+3y+5z=5a n d6x+5y+9z=10 a. meet in a poi...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Equation of the pane passing through the points (2,2,1)a n d(9,3,6)...

    Text Solution

    |

  4. Value of lambda such that the line (x-1)/2=(y-1)/3=(z-1)/lambda is | t...

    Text Solution

    |

  5. The equation of the plane through the intersection of the planes x+...

    Text Solution

    |

  6. The plane 4x+7y+4z+81=0 is rotated through a right angle about its l...

    Text Solution

    |

  7. The vector equation of the plane passing through the origin and the ...

    Text Solution

    |

  8. The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxve...

    Text Solution

    |

  9. The projection of the line (x+1)/(-1)=y/2=(z-1)/3 on the plane x-2y+z=...

    Text Solution

    |

  10. The direction cosines of a line satisfy the relations lambda(l+m)=n...

    Text Solution

    |

  11. The intercepts made on the axes by the plane the which bisects the ...

    Text Solution

    |

  12. Find the angle between the lines whose direction cosines are given by ...

    Text Solution

    |

  13. A sphere of constant radius 2k passes through the origin and meets t...

    Text Solution

    |

  14. A plane passes through a fixed point (a ,b ,c)dot The locus of the ...

    Text Solution

    |

  15. What is the nature of the intersection of the set of planes x+a y+(...

    Text Solution

    |

  16. Find the equation of a straight line in the plane vec rdot vec n=d...

    Text Solution

    |

  17. What is the equation of the plane which passes through the z-axis a...

    Text Solution

    |

  18. A straight line L on the xy-plane bisects the angle between O Xa n dO ...

    Text Solution

    |

  19. For what value (s) of a will the two points (1,a,1) and (-3,0,a) lie ...

    Text Solution

    |

  20. If the plane x/2+y/3+z/6=1 cuts the axes of coordinates at points, A ,...

    Text Solution

    |