Home
Class 12
MATHS
If (a, b, c) is a point on the plane 3x...

If `(a, b, c)` is a point on the plane `3x + 2y + z = 7,` then find the least value of 2(`a^2+b^2+c^2),` using vector method.

Text Solution

Verified by Experts

The correct Answer is:
`7`

Clearly minimum value of `a^(2)+b^(2)+c^(2)`
`" " =((|(3(0)+ 2(0)+ (0)-7)|)/(sqrt((3)^(2)+ (2)^(2)+(1)^(2))))^(2) = (49)/(14)=(7)/(2)` units
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES SUBJECTIVE TYPE|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise ARCHIVES SINGLE CORRECT ANSWER TYPE|9 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise MATRIX-MATCH TYPE|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos

Similar Questions

Explore conceptually related problems

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value (to the nearest integer) of a^2+b^2+c^2dot

If a : b = 3 : 2 " and " b : c = 3 : 2 , then find the value of the ratio (a + b) : (b + c) .

If x=c y+b z ,y=a z+c x ,z=bx+a y ,w h e r e .x ,y ,z are not all zeros, then find the value of a^2+b^2+c^2+2a b c dot

If A ( 1 , y , z) lies on the line through the points b ( 3 , 2 , - 1) and c ( - 4 , 6 , 3) , then find the values of y and z .

If y=3^(x-1)+3^(-x-1) , then the least value of y is (a) 2 (b) 6 (c) 2//3 (d) 3//2

If a^(2) +b +2a sqrtb =7+ 4sqrt3 and c^(2) +d -2csqrtd =1 then find the value of (a + b +c +d) .

Find a normal vector to the plane 2x-y+2z=5 . Also, find a unit vector normal to the plane.

Let A B C be a triangle. Let A be the point (1,2),y=x be the perpendicular bisector of A B , and x-2y+1=0 be the angle bisector of /_C . If the equation of B C is given by a x+b y-5=0 , then the value of a+b is (a) 1 (b) 2 (c) 3 (d) 4

Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7),(7,3,7)]=[0,0,0] If the point P(a,b,c) with reference to (E), lies on the plane 2x+y+z=1 , the the value of 7a+b+c is