Home
Class 12
MATHS
Let PQR be a triangle . Let veca=overlin...

Let `PQR` be a triangle . Let `veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24` then which of the following is (are) true ?

A

`(|vecc|^(2))/(2)-|veca|=12`

B

`(|vecc|^(2))/(2)-|veca|=30`

C

`|vecaxxvecb+veccxxveca|=48sqrt(3)`

D

`veca.vecb=-72`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`a., c., d. veca+ vecb + vecc=0 `
` implies vecb+ vecc=-veca`
`implies |vecb|+ |vecc|^(2) +2cevb. vecc= |veca|^(2)`
`implies 48+ |vecc|^(2)+48=144`
`implies |vecc|^(2)=48`
`implies |vecc|= 4sqrt(3)`
`therefore ( |vecc|^(2))/(2) +|veca|=36`
futher ,
`veca+vecb=-vecc``implies |veca|^(2)+|vecb|+2veca.vecb=|vecc|^(2)`
` implies 144+48+2veca. vecb=48`
`:' veca+vecb+vecc=0`
`implies veca+vecb +c=0`
` therefore |vecaxxvecb+veccxxveca|`
`2 |vecaxxvecb|`
`= 2 sqrt(a^(2)b^(2)-(veca.vecb)^(2))`
`= 2sqrt((144)(48)-(72)^(2)= 48sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise matching column type|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise chapter -3 multiple correct answers type|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Integer Answer type|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

Let veca ,vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=2, |vecb|=3, |vecc| = 6 , the find the length of veca +vecb + vecc .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between vecb and vecc .

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) ,then which of the following is incorrect?

Let veca , vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=3, |vecb|=4, |vecc| = 5 , the find the length of veca +vecb + vecc .

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

Let veca, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

The vectors veca,vecb,vecc are such that veca+vecb+vecc=vec0 , If |veca| =3 , |vecb|=4 and |vecc|= 5 , then show that veca.vecb+vecb.vecc+vecc.veca = -25