Home
Class 12
MATHS
Let vec a, vec b, and vec c be three non...

Let `vec a, vec b, and vec c` be three non coplanar unit vectors such that the angle between every pair of them is `pi/3`. If `vec a xx vec b+ vecb xx vec c=p vec a + q vec b + r vec c` where p,q,r are scalars then the value of `(p^2+2q^2+r^2)/(q^2)` is

Text Solution

Verified by Experts

The correct Answer is:
`(4)`

`|veca|=|vecb|=|vecc|=1`
` veca.vecb=vecb. vecc=vecc.veca=1//2`
Also ` vecaxxvecb+vecbxxvecc=pveca+qvecb+rvecc`
`implies veca.(vecbxxvecc) = p +q(veca.vecb) +r(veca.vecc)`
`implies veca.(vecbxxvecc ) = p+q(veca.vecb) r(veca.vecc)`
`therefore p+(q)/(2)+(r)/(2)=[vecavecbvecc]`
similarly taking dot product with vector `vecb` , we get
`(p)/(2)+q+(r)/(2)=0`
And, taking dot product with vector `vecc`, we get
`(p)/(2)+(q)/(2)+r=[veca vecbvecc]`
solving,(1),(2) and (3) , we get
` p=r=-q`
`implies (p^(2)+2q^(2)+r^(2))/(q^(2))=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec(a), vec(b) and vec(c) be three non-coplanar unit vectors such that the angle between every pair of them is (pi)/(3) . If vec(a) xx vec(b) + vec(b) xx vec(c) = pvec(a) + qvec(b) + rvec(c) , where p, q and r are scalars, then the value of (p^(2) + 2q^(2) + r^(2))/(q^(2)) is

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

If vec(a) , vec(b)and vec(a) xx vec(b) are three unit vectors , find the angles beween the vectors vec(a) and vec(b)

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

Let vec a , vec b and vec c be unit vectors such that vec a+ vec b- vec c=0. If the area of triangle formed by vectors vec a and vec b is A , then what is the value of 4A^2?

vec a , vecb , vec c are three mutually perpendicular unit vectors then |vec a + vec b + vec c| is equal to