Home
Class 12
MATHS
Let vecu = u(1)hati + u(2)hatj +u(3)hat...

Let ` vecu = u_(1)hati + u_(2)hatj +u_(3)hatk` be a unit vector in ` R^(3) and vecw = 1/sqrt6 ( hati + hatj + 2hatk)` , Given that there exists a vector `vecv " in " R^(3)` such that ` | vecu xx vecv| =1 and vecw . ( vecu xx vecv) =1` which of the following statements is/are correct ?

A

a. there is exactly one choice for such `vecv`

B

b. there are infinitely many choices for such `vecv`

C

c. if `hatu` lies in the xy - plane then `|u_(1)|=|u_(2)|`

D

d. if `hatu` lies in the xz-plane then `2|u_(1)|=|u_(3)|`

Text Solution

Verified by Experts

The correct Answer is:
B, C

b.,c.
`|hatuxxvecv|=1`
`implies |vecv|sin theta=1, " where"theta` is angle between `hatu and vecv`
also `hatw. (hatuxxvecv)=1`
`implies |hatw||hatu||hatv|sin theta cosalpha=1,`where `alpha` is angle beteen `hatw and (hatuxxvecv)`
`implies 1,1 (1) cos alpha=1`
`implies alpha=0`
`implies hatuxxvecv=lamdahatw`where `lamdagt0`
`implies |{:(hati,hatj,hatk),(u_(1),u_(2),u_(3)),(v_(1),v_(2),v_(3)):}|=(lamda)/(sqrt(6))(hati+hatj+2hatk)`
`implies (u_(2)v_(3)-u_(3)v_(2))hati+(u_(3)v_(1)-u_(1)v_(3)) hatj+(u_(1)v_(2)v_(1)) hatk=(lamda)/(sqrt(6))(hati+hatj+2hatk)`
`vecv` is a vector such that `(hatuxxvecv)` is parallel to `hatw`
`u_(3)=0impliesu_(2)v_(3)=(lamda)/(sqrt(6))and -u_(1)v_(3)=(lamda)/(sqrt(6))implies |u_(2)|=|u_(1)|`
` u_(2)=0implies -u_(3)v_(2)=(lamda)/(sqrt(6))and u_(1)v_(1)=(2lamda)/(sqrt(6))implies |u_(1)|=2|u_(3)|`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise single correct answer type|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise multiple correct answers type|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise chapter -3 multiple correct answers type|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If veca = hati + hatj + hatk , vecb = hatj - hatk then find a vector vecc , such that veca xx vecc = vecb and veca .vecc = 3 .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Knowledge Check

  • Let hat(u) = u_(1) hat(i) + u_(2) hat(j) + u_(3) hat(k) be a unit vector in R^(3) and hat(w) = (1)/(sqrt6) (hat(i) + hat(j) + 2hat(k)) . Given that there exists a vector vec(v) in R^(3) , such that |hat(u) + vec(v)| =1 and hat(w). (hat(u) + vec(v)) =1 Which of the following statement(s) is/are correct ?

    A
    There is exactly one choice for such `vec(v)`
    B
    There are infinitely many choices from such `vec(v)`
    C
    If `hat(u)` lies in the XY plane, then `|u_(1)| = |u_(2)|`
    D
    If `hat(u)` lies in the XZ plane then `2|u_(1)| = |u_(3)|`
  • Similar Questions

    Explore conceptually related problems

    Find a unit vector in the direction of veca= 3hati-2 hatj + 6hatk

    Find unit vector in the direction of vector veca=2hati+3hatj+hatk

    Given two vectors veca=-hati + 3hatj + hatk and vecb =- 3hati + hatj + hatk find |vec a xx vec b|

    Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

    Given two vectors veca= -hati +hatj + 2hatk and vecb =- hati - 2 hatj -hatk find |vec a xx vec b|

    Find a unit vector which is perpendicular to both vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

    Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|