Home
Class 12
MATHS
Solve sqrt((z-5))-sqrt(9-z)>1,x in Zdot...

Solve `sqrt((z-5))-sqrt(9-z)>1,x in Zdot`

Text Solution

Verified by Experts

`sqrt(x- 5 )-sqrt(9-x ) gt 1, ` is meaningful ,if
`x- 5 ge 0 " and "9 - x ge 0`
`rArr x in [ 5, 9]`
Thus , the integral values of x are 5,6,7,8,9 of these only x= 9 stisfies the given inequality .
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Solved Exp|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 1.1|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve x >sqrt((1-x))

Solve sqrt(x-1)>sqrt(3-x)dot

Solve, sqrt(x-6)-sqrt(10-x) ge 1 .

Solve for x :sqrt(x+1)-sqrt(x-1)=1.

Solve sqrt(5)x^(2) + x + sqrt(5)=0

Solve: sqrt(4x-9)+sqrt(4x+9)= 5+sqrt7 .

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(5-2 sin x)=6 sin x-1

Solve sqrt(2 cos^(2)x+1)+ sqrt(2 sin^(2)x+1)=2 sqrt(2)

Solve sqrt(x+5)+sqrt(x+21)=sqrt(6x+40.)