Home
Class 12
MATHS
Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)...

Prove that `sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x<-1 2x,-1lt=xlt=1 2,x >1`

Text Solution

Verified by Experts

`sqrt(x^2+2x+1)-sqrt(x^2-2x+1)`
`= sqrt((x+1)^2)-sqrt((x-1)^2)`
`=|x+1|-|x-1|`
`={{:(-x-1-(1-x)","x lt -1),(x+1 -(1-x)","-1 lex le 1),(x+1-(x-1)"," x gt1):}={{:(-2","x lt-1),(2x ","-1 le x le1),(2 "," x gt 1):}`
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Solved Exp|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 1.1|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If 2x = sqrta+1/sqrta . Show that sqrt(x^2-1)/(x-sqrt(x^2-1))(a-1)

Solve 1-x=sqrt(x^2-2x+1.)

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =

Prove that, int_(2)^(3)(dx)/((x-1)sqrt(x^(2)-2x))=(pi)/(3)

Solve : sqrt(2cos^2x+1)+sqrt(2sin^2x+1)=2sqrt2

Solve : sqrt(2cos^2x+1)+sqrt(2sin^2x+1)=2sqrt2

Solve sqrt(2 cos^(2)x+1)+ sqrt(2 sin^(2)x+1)=2 sqrt(2)

If x>y prove that sqrt(y+sqrt(2xy-x^2))+sqrt(y-sqrt(2xy-x^2)) = sqrt(2x) .

Simplify : (x + sqrt(x^(2) - 1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) -1))/(x + sqrt(x^(2) -1)) If the result of the simplification is equal to 14, then find the value of x