Home
Class 12
MATHS
Find all possible values of sqrt(|x|...

Find all possible values of
`sqrt(|x|-2)`

Text Solution

Verified by Experts

`sqrt(|x|-2)`
we know that square roots are defined for non- negative values only .
It implies that we must have `|x|-2 le 0 ` Thus
`sqrt(|x|-2) ge 0 `
(ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| le 0 `
But the maximum value of 3-|x-1| is 3 , when |x-1| is 0
Hence for `sqrt(3-|x-1|)` to get defined , `0 le 3- |x-1| le 3 `
Thus ,
`sqrt(3-|x-1|)in [0,sqrt(3)]`
Alternatively , `|x-1| ge 0`
`rArr -|x-1| le 0 `
`rArr 3-|x-1|le3`
But for `sqrt(3-|x-1|)` to get defined ,we must have `0 le 3 -|x-1| le 3 `
`rArr 0 le sqrt(3-|x-1| le sqrt(3)`
(iii) `sqrt(4-sqrt(x^2))=sqrt(4-|x|)`
`|x| ge 0 `
`rArr - |x| le 0 `
`rArr 4-|x| le 4 `
But for `sqrt(4-|x| )` to get defined `0 le 4 - |x| le 4 `
`therefore 0 le sqrt(4-|x|) le 2 `
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Solved Exp|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 1.1|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the possible values of sqrt(|x|-2) (ii) sqrt(3-|x-1|) (iii) sqrt(4-sqrt(x^2))

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Find all possible values of sqrt(i)+sqrt(-i)dot .

Find all possible values of (x^2+1)/(x^2-2) .

For x in R , find all possible values of (i)|x-4|-6

For x in R , find all possible values of |x-3|-2 (ii) 4-|2x+3|

Find all the possible values of f(x) =(1-x^2)/(x^2+3)

Find all the possible values of f(x) =(1-x^2)/(x^2+3)

Find all the possible values of b >0, so that the area of the bounded region enclosed between the parabolas y=x-b x^2a n dy=(x^2)/b is maximum.

Find all the possible values of 1/x for x>3 .