Home
Class 12
MATHS
Find the value of lim(xto3^(-)) (x-2)/(x...

Find the value of `lim_(xto3^(-)) (x-2)/(x-3).`

Text Solution

Verified by Experts

`L=underset(xto3^(-))lim(x-2)/(x-3)=underset(hto0)lim((3-h)-2)/((3-h)-3)=underset(hto0)lim(1-h)/(-h)` Now when h tends to 'O' , numerator (1-h) moves close to 1 and denominator (-h) moves close to 'O' but negative. Thus, we are dividing 1 with very small negative value. So, the value of the ratio will approach to negative infinity. Therefore, L approaches to `-oo.`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(3)=6andf'(3)=2 , find the value of lim_(xto3)(xf(3)-3f(x))/(x-3) .

Find the value of lim_(xto0^(+)) (sinx)^((1)/(x)) .

If 3-((x^(2))/(12))lef(x)le3+((x^(3))/(9)) in the neighborhood of x=0, then find the value of lim_(xto0) f(x).

Find the value of lim_(xto1)(x^(x)-1)/(xlogx)-lim_(xto0)log(1-3x)/(x).

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(xto1^(+)) 2^(-2^((1)/(1-x))).

The value of lim_(xto0+)(x)/(p)[(q)/(x)] is

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).