`Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x)` does not exist.
Text Solution
Verified by Experts
We have `f(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".` This function is piecewise function which changes its definition at x=0. So, to find limiting value of f(x) at x=0 we find LHL and RHL. To the left of zero, we have f(x) `=(x-1)` and to the right of zero, we have f(x) `=(x+1).` `LHL=underset(xto0)limf(x)=underset(hto0)limf(0-h)=underset(hto0)limf(-h)` `underset(hto0)lim((-h)-1)` -1 `RHL=underset(xto0^(+))limf(x)=underset(hto0)limf(0+h)=underset(hto0)limf(h)` `underset(hto0)lim(h+1)` `=1` Thus, LHL`ne`RHL. Therefore, `underset(xto0)limf(x)` does not exist.
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
Prove that lim_(xrarr0)sqrt(1-cosx)/x does not exist
Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xgt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.
If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.
If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.
Prove that lim_(xto0)(1+3x)^(3/x)=e^(9)
If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.
Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "
Prove that: lim_(xto0)log(1+2x)/(sin3x)=(2)/(3)
Evaluate lim_(xto0) (x)^((1)/(log_(e)sinx)).
If f(x) = (|x|)/(x) (x != 0) , then show that underset(x rarr 0)lim f(x) does not exists.