Home
Class 12
MATHS
f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),...

`f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):}` check limit at `x = 4` is.

Text Solution

Verified by Experts

LHL of f(x) at x=4 is
`underset(xto4^(+))limf(x)=underset(hto0)limf(4-h)`
`=underset(hto0)lim(|4-h-4|)/(4-h-4)=underset(hto0)lim(|-h|)/(-h)`
`=underset(hto0)limh/-h=underset(hto0)lim-1`
`=-1`
`RHL " of " f(x) " at "x=4" is"`
`underset(xto4^(+))limf(x)=underset(hto0)limf(4+h)`
`=underset(hto0)lim(|4+h-4|)/(4+h-4)`
`=underset(hto0)lim(|h|)/(h)=underset(hto0)limh/h=underset(hto0)lim1`
`=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Given, f(x)={((x^4-256)/(x-4), x ne 4), ( lambda, x = 4):} . If f is continuous at x = 4, then the value of ^root(4)(lambda) must be

(x-1)/(x-4)gt0(x ne 4),x in R

Let f(x)={((x-4)/(|x-4|)+a, xlt4),(a+b, x=4),((x-4)/(|x-4|)+b,x gt 4):} Then , f (x) is continuous at x = 4, when

If f(x) = ((4x + 3 ))/( ( 6x - 4 )), x ne 2/3, show that fof(x) =x, for all x ne 2/3. What is the inverse of f ?

If f(x) = 4^x then f(log_(4)x) =

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

(x-1)/(x+4)ge3,x ne-4 and x in R

Evaluate the right hand limit and left hand limit of the function f(x)={(|x-4|/(x-4), x ne 4),(0, x=4):}

If f(x)=4^(x)/(4^(x)+2) then find f(x) + f(1 - x).

If F(x)=(4x-5)/(3x-4), prove that F{F(x)} = x.