`f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):}` check limit at `x = 4` is.
Text Solution
Verified by Experts
LHL of f(x) at x=4 is `underset(xto4^(+))limf(x)=underset(hto0)limf(4-h)` `=underset(hto0)lim(|4-h-4|)/(4-h-4)=underset(hto0)lim(|-h|)/(-h)` `=underset(hto0)limh/-h=underset(hto0)lim-1` `=-1` `RHL " of " f(x) " at "x=4" is"` `underset(xto4^(+))limf(x)=underset(hto0)limf(4+h)` `=underset(hto0)lim(|4+h-4|)/(4+h-4)` `=underset(hto0)lim(|h|)/(h)=underset(hto0)limh/h=underset(hto0)lim1` `=1`
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
Given, f(x)={((x^4-256)/(x-4), x ne 4), ( lambda, x = 4):} . If f is continuous at x = 4, then the value of ^root(4)(lambda) must be
(x-1)/(x-4)gt0(x ne 4),x in R
Let f(x)={((x-4)/(|x-4|)+a, xlt4),(a+b, x=4),((x-4)/(|x-4|)+b,x gt 4):} Then , f (x) is continuous at x = 4, when
If f(x) = ((4x + 3 ))/( ( 6x - 4 )), x ne 2/3, show that fof(x) =x, for all x ne 2/3. What is the inverse of f ?
If f(x) = 4^x then f(log_(4)x) =
Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then
(x-1)/(x+4)ge3,x ne-4 and x in R
Evaluate the right hand limit and left hand limit of the function f(x)={(|x-4|/(x-4), x ne 4),(0, x=4):}
If f(x)=4^(x)/(4^(x)+2) then find f(x) + f(1 - x).