Home
Class 12
MATHS
Evaluate the left-and right-hand limits ...

Evaluate the left-and right-hand limits of the function defined by `f(x)={1+x^2,if0lt=x<1 2-x ,ifx >1` at `x=1.` Also, show that `("lim")_(xvec1)f(x)` does not exist

Text Solution

Verified by Experts

LHL of `f(x)` at x=1 is
`underset(xto1^(-))limf(x)=underset(hto0)f(1-h)`
`=underset(hto0)lim[1+(1-h)^(2)]`
`=underset(hto0)lim(2-2h+h^(2))=2`
RHL of f(x) at x=1 is
`underset(xto1^(+))limf(x)=underset(hto0)limf(1+h)`
`=underset(hto0)lim[2-(1+h)]`
`underset(hto0)lim(1-h)=1`
Clearly, `underset(xto1^(-))limf(x)neunderset(xto1^(+))f(x)`
So, `underset(xto1)limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the left-and right-hand limits of the function defined by f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):} at x=1 Also, show that lim_(xrarr1)f(x) does not exist

Show that ("lim")_(xrarr0) (e^(1/x)-1)/(e^(1/x)+1) does not exist

Evaluate the right hand limit and left hand limit of the function f(x)={(|x-4|/(x-4), x ne 4),(0, x=4):}

Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

Show that the function f: NrarrN defined by f(x)= x^2+x+1inN is not invertible.

If f(x)=(|x|)/(x),"show that ,"underset(xrarr0)"lim"f(x) does not exist .

The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is

If the function f be defined by f(x) =(2x +1)/(1-3x) , then f ^(-1) (x) is-

The function f is defined by f(x)={(,1-x,x lt 0),(,1,x=0),(,x+1,x gt 0):} Draw the graph of f(x).