Evaluate the left-and right-hand limits of the function defined by
`f(x)={1+x^2,if0lt=x<1 2-x ,ifx >1`
at `x=1.`
Also, show that `("lim")_(xvec1)f(x)`
does not exist
Text Solution
Verified by Experts
LHL of `f(x)` at x=1 is `underset(xto1^(-))limf(x)=underset(hto0)f(1-h)` `=underset(hto0)lim[1+(1-h)^(2)]` `=underset(hto0)lim(2-2h+h^(2))=2` RHL of f(x) at x=1 is `underset(xto1^(+))limf(x)=underset(hto0)limf(1+h)` `=underset(hto0)lim[2-(1+h)]` `underset(hto0)lim(1-h)=1` Clearly, `underset(xto1^(-))limf(x)neunderset(xto1^(+))f(x)` So, `underset(xto1)limf(x)` does not exist.
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
Evaluate the left-and right-hand limits of the function defined by f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):} at x=1 Also, show that lim_(xrarr1)f(x) does not exist
Show that ("lim")_(xrarr0) (e^(1/x)-1)/(e^(1/x)+1) does not exist
Evaluate the right hand limit and left hand limit of the function f(x)={(|x-4|/(x-4), x ne 4),(0, x=4):}
Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|
If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.
Show that the function f: NrarrN defined by f(x)= x^2+x+1inN is not invertible.
If f(x)=(|x|)/(x),"show that ,"underset(xrarr0)"lim"f(x) does not exist .
The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is
If the function f be defined by f(x) =(2x +1)/(1-3x) , then f ^(-1) (x) is-
The function f is defined by f(x)={(,1-x,x lt 0),(,1,x=0),(,x+1,x gt 0):} Draw the graph of f(x).