Home
Class 12
MATHS
Let f(x)={{:(cos[x]", "xle0),(|x|+a", ...

Let `f(x)={{:(cos[x]", "xle0),(|x|+a", "xgt0):}.` Then find the value of a, so that `lim_(xto0) f(x)` exists, where [x] denotes the greatest integer function less than or equal to x.

Text Solution

Verified by Experts

Since `underset(xto0)limf(x)` exists, we have
`underset(xto0-)limf(x)=underset(xto0+)limf(x)`
or`""underset(hto0)limf(0-h)=underset(hto0)limf(0+h)`
or`" "underset(hto0)lim||0-h||+a=underset(hto0)cos[0+h]`
or`" "a=costheta=1`
`:." "a=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Find the range of the following function : f(x)=In(x-[x]) ,where[.]denotes the greatest integer function.