Let `f(x)={{:(x+1", "xgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):}` Find the LHL and RHL of g(f(x)) at x=0 and, hence, find `lim_(xto0) g(f(x)).`
Text Solution
Verified by Experts
`xrarr0^(-)impliesf(x)rarrf(0^(-))=2^(+)" "("using" f(x)=2-x)` or `" "underset(xto0^(-))limg(f(x))=g(2^(+)-3" "("using" g(x)=x-5`) Also, `xto0^(+)impliesf(x)torarrf(0^(+))=1^(+)" "("using" f(x)=x+1)` or `" "underset(xto0^(+))limg(f(x))=g(1^(+))=-3" "("using" g(x)=x^(2)-2x-2)` Hence, `underset(xto0)limg(f(x))` exists and is equal to -3. Therefore, `underset(xto0)limg(f(x))=-3`
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).
If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.
let f(x)={( int_0^x|1-t|dt, xgt1),(x-1/2, xle1):} then
Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is
Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then
Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "
Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.
Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).
If f(x)={(x[x], 0lexlt2),((x-1)[x],2lexle3):} , then f(x) is
If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.