LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to
Let f(x)=(bx+a)/(x+1), lim_(x to 0)f(x)=2 then the value of a is .
Let f(a)=g(a)=k and their nth derivatives exist and be not equal for some n. If lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then find the value of k.
If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then find the value of lim_(x->oo) f(x)
If f(2) = 2, and f'(2) = 1, then the value of lim_(xrarr2)(xf(2)-2f(x))/(x-2)
If lim_(x->a)[f(x)g(x)] exists, then both lim_(xtoa)f(x) and lim_(x->a)g(x) exist.
If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.
If f (a) =2, f '(a) =1, g (a) =-3 .g'(a) =-1 , then the value of lim _(xtoa)(f(a) g(x) -g(a)f(x))/(a-x) is equal to-
If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is
If f(a) = 2, f'(a) = 1, g(a) = -1 and g'(a) = 2 , find the value of lim_(x rarr a)(g(x)f(a) - g(a)f(x))/(x-a)