Home
Class 12
MATHS
If lim(xtoa)[f(x)+g(x)]=2 and lim(xtoa) ...

If `lim_(xtoa)[f(x)+g(x)]=2` and `lim_(xtoa) [f(x)-g(x)]=1,` then find the value of `lim_(xtoa) f(x)g(x).`

Text Solution

Verified by Experts

`underset(xtoa)lim[f(x)+g(X)]=2`
or ` underset(xtoa)limf(x)+underset(xtoa)limg(x)=2" "(1)`
`underset(xtoa)lim[f(x)-g(x)]=1`
or `underset(xtoa)limf(x)-underset(xtoa)limg(x)=1" "(2)`
Adding (1) and (2),
`2underset(xtoa)limf(x)=3" "or" "underset(xtoa)limf(x)=3/2`
Subtracting (2) from (1),
`2underset(xtoa)limg(x)=1" "`or`" "underset(xtoa)limg(x)=1/2`
or `" "underset(xtoa)limf(x)g(x)=underset(xtoa)limf(x)underset(xtoa)limg(x)=3/2xx1/2=3/4`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

Let f(x)=(bx+a)/(x+1), lim_(x to 0)f(x)=2 then the value of a is .

Let f(a)=g(a)=k and their nth derivatives exist and be not equal for some n. If lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then find the value of k.

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then find the value of lim_(x->oo) f(x)

If f(2) = 2, and f'(2) = 1, then the value of lim_(xrarr2)(xf(2)-2f(x))/(x-2)

If lim_(x->a)[f(x)g(x)] exists, then both lim_(xtoa)f(x) and lim_(x->a)g(x) exist.

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

If f (a) =2, f '(a) =1, g (a) =-3 .g'(a) =-1 , then the value of lim _(xtoa)(f(a) g(x) -g(a)f(x))/(a-x) is equal to-

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If f(a) = 2, f'(a) = 1, g(a) = -1 and g'(a) = 2 , find the value of lim_(x rarr a)(g(x)f(a) - g(a)f(x))/(x-a)