Home
Class 12
MATHS
Find lim(xto0) [x]((e^(1//x)-1)/(e^(1//x...

Find `lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)),` (where `[.]` represents the greatest integer funciton).

Text Solution

Verified by Experts

`underset(xto0)lim[x]((e^(1//x)-1)/(e^(1//x)+1))=underset(hto0)lim[h]((e^(1//h)-1)/(e^(1//h)+1))`
`=underset(hto0)lim[h]((1-e^(-1//h))/(1+e^(-1//h)))`
=0xx(1-0)/(1+0)=0
`underset(xto0)lim[x]((e^(1//x)-1)/(e^(1//x)+1))=underset(hto0)lim[-h]((e^(-1//h)-1)/(e^(-1//h)+1))`
`=(-1)xx(0-1)/(0+1)=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.