Home
Class 12
MATHS
Evaluate lim(ntooo) (1^(3)+2^(3)+3^(3)+....

Evaluate `lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).`

Text Solution

Verified by Experts

`underset(ntooo)lim(1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1))=1/4underset(ntooo)lim(n^(2)(n+1)^(2))/(sqrt(4n^(8)+1))`
`=1/4underset(ntooo)lim(n^(2))/((1)/(n^(4))sqrt(4n^(8)+1))`
`=1/4underset(ntooo)lim(1+(1)/(n))^(2)/(sqrt(4+(1)/(n^(8))))=1/8`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(nrarroo)(1^(m)+2^(m)+3^(m)+...+n^(m))/(n^(m+1))(mgt-1)

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

Prove that, lim_(ntooo)(1^(2)+2^(2)+3^(2)+.......+(n+2)^(2))/(n^(3))=(1)/(3)

Evaluate: lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)

Evaluate lim_(ntooo) sin^(n)((2pin)/(3n+1)),ninN.

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

Prove that underset(nrarroo)"lim"(1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=(1)/(4)

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

Evaluate lim_(ntooo) nsin(2pisqrt(1+n^(2))),(n inN).

If L= lim_(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^(2)+1))) , and n is even then the value of L^(4) is _____________.