Home
Class 12
MATHS
Evaluate: lim(x->oo) (x+7sinx)/(-2x+13)...

Evaluate: `lim_(x->oo)` `(x+7sinx)/(-2x+13)`

Text Solution

Verified by Experts

We known that `-1lesinxle1`for all x. So,
`-7le7sinxlex+7`
or `x-7lex+7sinxlex+7`
Dividing throughout by `-2x+13,` we get
`(x-7)/(-2x+13)ge(x+7sinx)/(-2x+13)ge(x+7)/(-2x+13)`
for all x that are large (Why did we switch the inequality signs?)
Now, `underset(xtooo)lim(x-7)/(2x+13)=underset(xtooo)lim(1-((7)/(x)))/(-2+((13)/(x)))=(1-0)/(-2+0)=-(1)/(2)`
`underset(xtooo)lim (x+7sinx)/(-2x+13)=-1/2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xrarr0)(x-sinx)/x^3

Evaluate lim_(xtooo) (sinx)/(x).

Evaluate: lim_(x->0)(tan2x-x)/(3x-sinx)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate ("lim")_(x->0) (sinx-2)/(cosx-1)

Evaluate lim_(x->0)(3x+|x|)/(7x-5|x|)

Evaluate : lim_(xrarr0) (tanx-sinx)/x^3

Evaluate: lim_(x->oo)[x(a^(1/x)-1)], a >1

Evaluate: lim_(xto0)(sinx+cosx)^(1//x)

Evaluate: lim_(x->2) (x^2-1)/(2x+4)