If [x] denotes the greatest integer less than or equal to x, then evaluate `lim_(ntooo) (1)/(n^(3))([1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).`
Text Solution
Verified by Experts
We have, `underset(ntooo)lim(sum_(r=1)^(n)[r^(2)x])/(n^(3))=underset(ntooo)lim(underset(r=1)overset(n)sumr^(2)x-{r^(2)x})/(n^(3))` Where `{.}` denotes the fractional part function `=underset(ntooo)lim((x.(n(n+1)(2n+1))/(6))/n^(3)-underset(r=1)overset(n)sum{{r^(2)x}}/(n^(3)))` `=x/6underset(ntooo)lim(1+(1)/(n))(2+(1)/(n))-underset(ntooo)limunderset(r=1)overset(n)sum{{r^(2)x}}/(n^(3))` `=x/6-0" "( :. 0le{r^(2)x}lt1)` `=x/6`
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).
[x] denotes the greatest integer, less than or equal to x, then the value of the integral int_(0)^(2)x^(2)[x]dx equals
if [x] denotes the greatest integer less than or equal to x then integral int_0^2x^2[x] dx equals
let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2
Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to-
Let [x] denotes the greatest integer less then or equal to x. If x=(sqrt3+1)^5 , then [x] is equal to
Let [x] denote the greatest integer less than or equal to x for any real number x. Then lim_(n to oo) ([n sqrt(2)])/(n) is equal to
Let [ x ] denote the greatest integer less than or equal to x, then the value of the integral int_-1^1 (absx - 2[x]) dx is equal to
If a and b are positive and [x] denotes greatest integer less than or equal to x, then find lim_(xto0^(+)) x/a[(b)/(x)].
If [x] denotes the greatest integer less than or equal to x, the extreme values of the function f(x)=[1+sinx]+[1+sin2x]+[1+sin3x]+…+[1+sin nx], n in 1^+, x in(0,pi) are