Home
Class 12
MATHS
Evaluate lim(ntooo) (n^(p)sin^(2)(n!))/(...

Evaluate `lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"where "0ltplt1.`

Text Solution

Verified by Experts

We have `underset(ntooo)lim(n^(p)sin^(2)(n!))/(n+1)" "((oo)/(oo)"from")`
`=underset(ntooo)lim(sin^(2)(n!))/(n^(1-p)(1+1/n))`
`=("some number between 0 and1")/(ooxx1)=0" "("as "0ltplt1)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo) sin^(n)((2pin)/(3n+1)),ninN.

Evaluate lim_(ntooo) nsin(2pisqrt(1+n^(2))),(n inN).

Evaluate: lim_(n->oo)(4^n+5^n)^(1/n)

Evaluate lim_(ntooo) (-1)^(n-1)sin(pisqrt(n^(2)+0.5n+1)),"where "nin N

Evaluate lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n+1)))+n) .

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

lim_(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ ) is equal to

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

Prove that, lim_(ntooo)e^((2)/(n)+1)=e