If `lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3` then find the values of a and b.
Text Solution
Verified by Experts
We have `underset(xto0)lim((4x-1)^(1/3)+a+bx)/(x)=1/3` `implies" "underset(xto0)lim(-[1-4/3x]+a+bx)/(x)=1/3` `implies" "underset(xto0)lim((a-1)+(4/3+b)x)/(x)=1/3` For limit to exist, `a-1=0` or a = 1 `implies" "underset(xto0)lim((4/3+b)x)/(x)=1/3` `4/3+b=1/3` `b=-1`