Home
Class 12
MATHS
If lim(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3...

If `lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3` then find the values of a and b.

Text Solution

Verified by Experts

We have `underset(xto0)lim((4x-1)^(1/3)+a+bx)/(x)=1/3`
`implies" "underset(xto0)lim(-[1-4/3x]+a+bx)/(x)=1/3`
`implies" "underset(xto0)lim((a-1)+(4/3+b)x)/(x)=1/3`
For limit to exist, `a-1=0` or a = 1
`implies" "underset(xto0)lim((4/3+b)x)/(x)=1/3`
`4/3+b=1/3`
`b=-1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2 then find the values of a and b.

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then find the value of 1//(3L) is ________.

If lim_(xto1) (1+ax+bx^(2))^((c)/((x-1)))=e^(3) , then find the value of bc is _________.

Let alpha,betainR be such that lim_(xto0) (x^(2)sin(betax))/(alphax-sinx)=1 . Then find the value of 6(alpha+beta) ___________.

lim_(xto0+)(e^x+x)^((1)/(x))

If lim _(xto0) 1/x [log (3+x) - log (3-x) ]=k, then the value of k is-

lim _(xto0) (a ^(x) -b^(x))/(e ^(x)-1)

If lim_(xrarr0)(1+ax+bx^2)^(2//x)=e^3 , then the value of a and b, is :

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Slove lim_(xto0)((1+x)^(1//x)-e)/x