If `("lim")_(x -> 0)(cos4x+acos2x+b)/(x^4)`
is finite, find `aa n db`
using expansion formula.
Text Solution
Verified by Experts
`underset(xto0)lim(cos4x+acos2x+b)/(x^(4))="Finite"` Using expansion formula for `cos4x" and "cos2x,` we get `underset(xto0)lim((1-(4x)^(2)/(2!)+(4x)^(4)/(4!))+a(1-(2x)^(2)/(2!)+(2x)^(4)/(4!))+b)/(x^(4))` or `" "underset(xto0)lim((1+a+b)+(-8-2a)x^(2)+((32)/(3)+2/3a)x^(4)+...)/(x^(4))` or `" "1+a+b=0` `-8-2=0` Solving (1) and (2) for a and b, we get `a=-4" and " b=3` Also, Limit`=32/3+2/3a=(32-8)/(3)=8`
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
If lim_(xto0)(sin2x+asinx)/(x^(3)) is finite, find a and the limit.
If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a
Evaluate: lim_(x->0)(cot2x-cos e c2x)/x
Evaluate ("lim")_(x -> 0)(x-sinx)/(x^3)dot (Do not use either LHospitals rule or series expansion for sinxdot)dot Hence, evaluate ("lim")_(x -> 0)(sinx-xcosx+x^2cotx)/(x^5)
Evaluate: lim_(x->0)(1+x)^(cos e cx )
Evaluate : lim_(x to 0)(1-cosxsqrt(cos^2x))/x^2
lim_(xrarr0)((1-cos2)(3+cos x))/(xtan 4x) is equal to