Home
Class 12
MATHS
If ("lim")(x -> 0)(cos4x+acos2x+b)/(x^4)...

If `("lim")_(x -> 0)(cos4x+acos2x+b)/(x^4)` is finite, find `aa n db` using expansion formula.

Text Solution

Verified by Experts

`underset(xto0)lim(cos4x+acos2x+b)/(x^(4))="Finite"`
Using expansion formula for `cos4x" and "cos2x,` we get
`underset(xto0)lim((1-(4x)^(2)/(2!)+(4x)^(4)/(4!))+a(1-(2x)^(2)/(2!)+(2x)^(4)/(4!))+b)/(x^(4))`
or `" "underset(xto0)lim((1+a+b)+(-8-2a)x^(2)+((32)/(3)+2/3a)x^(4)+...)/(x^(4))`
or `" "1+a+b=0`
`-8-2=0`
Solving (1) and (2) for a and b, we get
`a=-4" and " b=3`
Also, Limit`=32/3+2/3a=(32-8)/(3)=8`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto0)(sin2x+asinx)/(x^(3)) is finite, find a and the limit.

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a

Evaluate: lim_(x->0)(cot2x-cos e c2x)/x

Evaluate ("lim")_(x -> 0)(x-sinx)/(x^3)dot (Do not use either LHospitals rule or series expansion for sinxdot)dot Hence, evaluate ("lim")_(x -> 0)(sinx-xcosx+x^2cotx)/(x^5)

Evaluate: lim_(x->0)(1+x)^(cos e cx )

Evaluate : lim_(x to 0)(1-cosxsqrt(cos^2x))/x^2

lim_(xrarr0)((1-cos2)(3+cos x))/(xtan 4x) is equal to

The value of lim_(xrarr0)(1-cos4x)/x^2 is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

Evaluate: lim_(x to 0)(e^(4x)-e^(-x))/(x)