Home
Class 12
MATHS
Find the integral value of n for which ...

Find the integral value of `n` for which `("lim")_(xvec0)(cos^2x-cosx-e^xcosx+e^x-(x^3)/2)/(x^n)` is a finite nonzero number

Text Solution

Verified by Experts

Given that
`underset(xto0)lim (cos^(2)x-cosx-e^(x)cosx+e^(x)-(x^(3))/(2))/(x^(n))`
`=underset(xto0)lim((cosx-1)(cosx-e^(x))-(x^(3))/(2))/(x^(n))`
`=underset(xto0)lim((1-(x^(2))/(2!)+(x^(4))/(4!)-(x^(6))/(6!)+...-1)[(1-(x^(2))/(2!)+(x^(4))/(4!)-...)-(1+x+(x^(2))/(2!)+(x^(3))/(3!)...)]-(x^(3))/(2))/(x^(n))`
`=underset(xto0)lim((-(x^(2))/(2!)+(x^(4))/(4!)-(x^(6))/(6!)+...)[(-x-x^(2)-(x^(3))/(3!)-(x^(5))/(5!)-...)]-(x^(3))/(2))/(x^(n))`
`=underset(xto0)lim(((x^(3))/(2)+(x^(4))/(2)+(x^(5))/(12)-(x^(5))/(24 )+...)-(x^(3))/(2))/(x^(n))`
=nonzero if n = 4
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find the integral value of n for which lim_(x->0)(cos^2x-cosx-e^xcosx+e^x-(x^3)/2)/(x^n) is a finite nonzero number

The integer n for which lim_(x rarr0)((cos x-1)(cosx-e^x))/x^n is a finite non-zero number is :

Find the value of x for which cos e c^(-1)(cosx) is defined.

Evaluate: lim_(x->0)(cot2x-cos e c2x)/x

The value of lim _(xto0) ((cos x -1) (cos x-e ^(x)))/(x ^(3)) is-

Find the value of alpha so that lim_(x->0)1/(x^2)(e^(alphax)-e^x-x)=3/2

If ("lim")_(x -> 0)(cos4x+acos2x+b)/(x^4) is finite, find aa n db using expansion formula.

Evaluate: lim_(x->0)(x2^x-x)/(1-cosx)

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is