Home
Class 12
MATHS
Evaluate lim(xto-1^(+))(sqrt(pi)-sqrt(co...

Evaluate `lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).`

Text Solution

Verified by Experts

`underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x))`
`=underset(xto-1^(+))lim(pi-cos^(-1)x)/(sqrt(1+x)).(1)/(sqrt(pi)+sqrt(cos^(-1)x))`
`=underset(xto-1^(+))lim(cos^(-1)(-x))/(sqrt(1+x)).(1)/(sqrt(pi)+sqrt(pi))`
`=(1)/(2sqrt(pi))underset(thetato0^(+))lim(theta)/(sqrt(1-costheta))" "`(Putting `cos^(-1)(-x)=theta)`
`=(1)/(2sqrt(pi))underset(thetato0^(+))lim(theta)/(sqrt(2"sin"^(2)(theta)/(2)))`
`=(1)/(sqrt(2pi))underset(thetato0^(+))lim((theta)/(2))/("sin"(theta)/(2))`
`=(1)/(sqrt(2pi))`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x->0)(sqrt(2+x)-sqrt(2))/x

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

Evaluate lim_(xto1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrtx))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1).

Evaluate lim_(xtooo) sqrt(x)(sqrt(x+c)-sqrt(x)).

Evaluate lim_(xto0^(+)) (1)/(x)cos^(-1)((sinx)/(x)) .

Evaluate lim_(xto1) ("cos"(pi)/(2)x)/(1-sqrt(x))

Evaluate lim_(xtooo) x^(3){sqrt(x^(2)+sqrt(1+x^(4)))-xsqrt(2)}.

Evaluate: lim_(x->oo)(sqrt(3x^2-1)-sqrt(2x^2-1))/(4x+3)

Evaluate: lim_(xto2)(sqrt(2x+5)-3(sqrt(2x-3)))/(root3(2x-3))

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).