Home
Class 12
MATHS
Using lim(theta -> 0) (sintheta/theta)=...

Using `lim_(theta -> 0) (sintheta/theta)=1` prove that the area of circle of radius `R` is `piR^2`

Text Solution

Verified by Experts

In the following figure regular polygon on n sides is inscribed in the circle of radius R.

In the figure, `OA_(1)=OA_(2)=R" and "angleA_(1)OA_(2)=2pi//n` Clearly area of polygon
`Delta=nxx("Area of the "DeltaOA_(1)A_(2))`
`=nxx(1)/(2)RxxRxx"sin"(2pi)/(n)`
`:. " "Delta=(nR^(2))/(2)"sin"(2pi)/(n)`
We know that circle is regular palygon having infinite number of sides. So, from above formula
`underset(ntooo)lim(nR^(2))/(2)"sin"(2pi)/(n)=underset(ntooo)limpiR^(2)("sin"(2pi)/(n))/((2pi)/(n))`
`piR^(2)underset(ntooo)lim("sin"(2pi)/(n))/((2pi)/(n))`
`=piR^(2)xx1" "( :.underset(thetato0)lim(sintheta)/(theta)=1)`
`=piR^(2)`
Thus, area of circle having radius R is `piR^(2).`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Find lim_(theta to 0)theta log(2-cos^2 theta)

int_(0)^(pi)(sin4theta)/(sintheta)d theta=0

int(cos2theta)/((sintheta+costheta)^2)d theta is equal to

Prove that (sin 3theta-sintheta)/(costheta-cos3 theta)=cot2 theta

If sintheta+costheta=1/5"and"0 le theta ltpi, then tantheta is

If sin^2theta=cos^3theta prove that, cot^6theta-cot^2theta=1 .

If sin theta+ sin^2 theta = 1 , prove that cos^2 theta+ cos^4 theta = 1 .

(1-2sintheta -2costheta + cottheta) =0 (0 lt theta lt 2pi)

If tan^4theta+tan^2theta=1 , prove that, cos^4 theta+cos^2theta=1

Solve theta for 4sinthetacostheta=1+2costheta-2sintheta (0