Home
Class 12
MATHS
Evaluate : [underset(x to 0)lim (tan x)/...

Evaluate : `[underset(x to 0)lim (tan x)/(x)]`, where `[*]` represents the greatest integer function.

Text Solution

Verified by Experts

See the graph of y=x and `tan^(-1)x` in the figure:

From the figure, when `xto0^(+)`, graph of y=x is above the graph
So,`" "tan^(-1)xltx" or "(tan^(-1)x)/(x)lt1`
`implies" "underset(xto0^(+))lim(tan^(-1)x)/(x)=1^(-)`
`implies" "[underset(xto0^(+))lim(tanx)/(x)]=0`
Thus`" "[underset(xto0)lim(tan^(-1)x)/(x)]=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate underset(xrarr0^(+))(lim)(x/a)[b/x] where [.] represents greatest integer function.

Draw the graph of |y|=[x] , where [.] represents the greatest integer function.

underset(xrarr0)(lim)[(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Find x satisfying [tanx]+[cotx]=2, where [.] represents the greatest integer function.

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )