If
`L=lim_(x->0)(sin2x+asinx)/(x^3)`
is finite, then find the value of `a`
Text Solution
Verified by Experts
`L= underset(xto0)lim(sin2x+asinx)/(x^(3))` `underset(xto0)lim(2sinxcosx+asinx)/(x^(3))` `=underset(xto0)lim(sinx)/(x)(2cosx+a)/(x^(2))` `=underset(xto0)lim(2cosx+a)/(x^(2))` Now, `D^( r )` tends to 0 when `xto0.` Then `N^( r )` also must tend to zero for which `underset(xto0)lim(2cosx+a)=0impliesa=-2.` Now, `L= underset(xto0)lim(2cosx-2)/(x^(2))=-2underset(xto0)lim(2"sin"^(2)(x)/(2))/(x^(2))=-1`