Home
Class 12
MATHS
If L=lim(x->0)(sin2x+asinx)/(x^3) is f...

If `L=lim_(x->0)(sin2x+asinx)/(x^3)` is finite, then find the value of `a`

Text Solution

Verified by Experts

`L= underset(xto0)lim(sin2x+asinx)/(x^(3))`
`underset(xto0)lim(2sinxcosx+asinx)/(x^(3))`
`=underset(xto0)lim(sinx)/(x)(2cosx+a)/(x^(2))`
`=underset(xto0)lim(2cosx+a)/(x^(2))`
Now, `D^( r )` tends to 0 when `xto0.` Then `N^( r )` also must tend to zero for which `underset(xto0)lim(2cosx+a)=0impliesa=-2.` Now,
`L= underset(xto0)lim(2cosx-2)/(x^(2))=-2underset(xto0)lim(2"sin"^(2)(x)/(2))/(x^(2))=-1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(sin2xsin3x)/x^2

lim_(x->0)(sin^2x)/x

lim_(x->0) (sin x /x)

If lim_(xto0)(sin2x+asinx)/(x^(3)) is finite, find a and the limit.

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then find the value of 1//(3L) is ________.

Find lim_(x->0)(sin(pisin^2(x))/x^2)

If lim_(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(xrarr0)(2asinx-sin2x)/tan^3x exists and is equal to 1, then thee value of a is

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then find the value of lim_(x->oo) f(x)

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.