Home
Class 12
MATHS
If m , n in I0a n d("lim")(xvec0)(tan2x...

If `m , n in I_0a n d("lim")_(xvec0)(tan2x-nsinx)/(x^3)=` some integer, then find the value of `n` and also the value of limit.

Text Solution

Verified by Experts

`L=underset(xto0)lim(tan2x-nsinx)/(x^(3))`
`underset(xto0)lim(sin2x-nsinxcos2x)/(x^(3)cos2x)`
`=underset(xto0)lim("sin"x)/(x)((2cosx-ncos2x))/(x^(2))=(1)/(cos2x)`
`=underset(xto0)lim((2cosx-ncos2x))/(x^(2))`
Now, for `xto0`,`x^(2)to0`.
Therefore, for `xto0, 2cosx-ncos2xto0.` So, n=2. For, n=2.
`L=underset(xto0)lim((2cosx-ncos2x))/(x^(2))`
`=4underset(xto0)lim("sin"(x)/(2)"sin"(3x)/(2))/(x^(2))`
=3
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If m , n in I_0 and lim_(xrarr0)(tan2x-nsinx)/(x^3)= "some integer" , then find the value of n and also the value of limit.

If lim_(xrarr0)(tanx-sinx)/x^3=M/N and M = 3, then the value of N is

If lim_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

If (n+3)! =56 x (n+1)!, Find the value of n.

If n is an integer and -3 < n <3 , then the values of n .

If underset(xrarr0)"lim" (tanx-sinx)/(x^(3))=(M)/(N) , then value of N (when M =3 ) is equal to -

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

If underset(x rarr 3)lim (x^(n) - 3^(n))/(x-3) = 27n , then the value of n is -

If lim_(xrarr3)(x^n3^n)/(x-3)=27n ,then the value of n is

If lim_(xrarr3)(x^n-3^n)/(x-3)=108 ,then the value of n is