If `m , n in I_0a n d("lim")_(xvec0)(tan2x-nsinx)/(x^3)=`
some integer, then find the value of `n`
and also the value of limit.
Text Solution
Verified by Experts
`L=underset(xto0)lim(tan2x-nsinx)/(x^(3))` `underset(xto0)lim(sin2x-nsinxcos2x)/(x^(3)cos2x)` `=underset(xto0)lim("sin"x)/(x)((2cosx-ncos2x))/(x^(2))=(1)/(cos2x)` `=underset(xto0)lim((2cosx-ncos2x))/(x^(2))` Now, for `xto0`,`x^(2)to0`. Therefore, for `xto0, 2cosx-ncos2xto0.` So, n=2. For, n=2. `L=underset(xto0)lim((2cosx-ncos2x))/(x^(2))` `=4underset(xto0)lim("sin"(x)/(2)"sin"(3x)/(2))/(x^(2))` =3