Home
Class 12
MATHS
Evaluate: lim(x->0)(log(5+x)-"log"(5-x))...

Evaluate: `lim_(x->0)(log(5+x)-"log"(5-x))/x`

Text Solution

Verified by Experts

We have `underset(xto0)lim(log(5+x)-log(5-x))/(x)" "`(0/0 form)
`=underset(xto0)lim(log{5(1+(x)/(5))}-log{5(1-(x)/(5))})/(x)`
`=underset(xto0)lim({log5+log(1+(x)/(5))}-{log5+log(1- (x)/(5))})/(x)`
`=underset(xto0)lim(log(1+(x)/(5))-log(1-(x)/(5)))/(x)`
`=underset(xto0)lim(1)/(5)(log(1+(x)/(5))^(x))/(x//5)+underset(xto0)limlog(1-(x)/(5))/(-x//5)1/5=1/5+1/5=2/5`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)log(1+2x)/x

Evaluate: lim_(x-0)((e^x-1)log_5(1+5x))/(sin^2x)

Evaluate: lim_(x->a)("log"(x-a))/(log(e^x-e^a))

Evaluate: lim_(x rarr 0) ((e^(x)-1)log(1+x))/(sin^(2)x)

Evaluate: lim_(x->2)(x-2)/((log)_a(x-1))

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

Evaluate : lim_(x->1)(x^2+x(log)_e x-(log)_e x-1)/((x^2-1)

Evaluate : lim_(x->0)(log)_(tan^2x)(tan^2 2x)dot

Evaluate: lim_(x rarr 0) ((e^(2)-1)log(1+x))/(sinx)

Evaluate: lim_(x rarr 0) log(1+3x)/(x)