Let `P_(n)=a^(P_(n-1))-1,AA n=2,3,...,` and let `P_(1)=a^(x)-1,` where `ainR^(+).` Then evaluate `lim_(xto0) (P_(n))/(x).`
Text Solution
Verified by Experts
Clearly, if `P_(k)to0,` then `P_(k+1)to0.` Now, as `xto0,` we get `P_(1)to0` or `P_(2),P_(3),P_(4),…,P_(n)to0`. Therefore, `underset(xto0)lim(P_(n))/(x)=underset(xto0)lim(P_(n))/(P_(n-1))(P_(n-1))/(P_(n-2))...(P_(1))/(x)` Now, `underset(xto0)lim(P_(k))/(P_(k-1))=underset(xto0)lim(a^(P_(k-1))-1)/(P_(k-1)) =1n" "a` `:. " "" Required limit "=(ln" "a)^(n)`
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
Evaluate lim_(xrarr1)(x^(P+1)-(P+1)x+P)/((x+1)^2)
Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=
If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .
Let int_x^(x+p)f(t)dt be independent of x and I_1=int_0^p f(t) dt , I_2 = int_(10)^(p^n+10) f(z) dz for some p , where n in N . Then evaluate (I_2)/(I_1) .
If .^(2n+1)P_(n-1): .^(2n-1)P_(n)=3:5 , find n.
If .^(n)P_(5)=20.^(n)P_(3) , find n.
If .^(n+1)P_(4):^(n-1)P_(3)=72:5 , find n.
If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+.............+a_(1)x+a_(0) , where n is a whole number and a_(0),a_(1),a_(2),…………..,a_(n-1),a_(n)ne0 are constants then p(1) =
If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+.............+a_(1)x+a_(0) , where n is a whole number and a_(0)=a_(1)=a_(2)= ………….. =a_(n-1)=0nea_(n) , then p(1) =
Let int_x^(x+p)f(t)dt be independent of xa n dI_1=int_0^pf(t)dt ,I_2=int_(10)^(p^n+10)f(z)dz for some p , where n in Ndot Then evaluate (l_2)/(l_1)dot