Home
Class 12
MATHS
Evaluate ("lim")(xto0)((sinx)/x)^(((sin...

Evaluate `("lim")_(xto0)((sinx)/x)^(((sinx)/(x-sinx)))`

Text Solution

Verified by Experts

Since, `underset(xto0)lim(sinx)/(x)=1`
and `" "underset(xto0)lim(sinx)/(x-sinx)=underset(xto0)lim(1)/(((x)/(sinx)-1))=(1)/(1-1)=oo`
we have `underset(xto0)lim((sinx)/(x))^(((sinx)/(x-sinx)))=e^(underset(xto0)lim((sinx)/(x)-1)((sinx)/((x-sinx))`
`=e^(underset(xto0)lim-(sinx)/(x))=e^(-1)=(1)/(e)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

The value of [lim_(x to 0)((sinx)/(x))^(sinx/(x-sinx))+lim_(x to 1)x^(1/(1-x))] is

Evaluate lim_(xtooo) (sinx)/(x).

Evaluate: lim_(xto0)(sinx+cosx)^(1//x)

Evaluate lim_(xto0) (e^(sinx)-(1+sinx))/((tan(sinx))^(2))

Evaluate ("lim")_(x->0) (sinx-2)/(cosx-1)

Evaluate lim_(xto0) (logcosx)/(x)

lim_(xto0)(sinx)^(2tanx)=

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

Evaluate : lim_(xrarr0)(x-sinx)/x^3