Home
Class 12
MATHS
Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3...

Evaluate: `("lim")_(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)`

Text Solution

Verified by Experts

We have
`underset(xto0)lim((a^(x)+b^(x)+c^(x))/(3))^(2//x)=e^(underset(xto0)lim((a^(x)+b^(x)+c^(x))/(3)-1).2/x`
`=e^(2/3underset(xto0)lim((a^(x)+b^(x)+c^(x)-3)/(x))`
`=e^(2/3underset(xto0)lim((a^(x)-1)/(x)+(b^(x)-1)/(x)+(c^(x)-1)/(x))`
`=e^(2/3{underset(xto0)lima^(x-1)/(x)+underset(xto0)lim(b^(x)-1)/(x)+underset(xto0)lim(c^(x)-1)/(x)}}`
`=e^((2//3){"In "a+"In "b+"In "c}}`
`=e^((2//3)"In"(abc))`
`=e^("In"(abc)^(2//3))`
`=(abc)^(2//3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xrarr0)((a^x+b^x+c^x)/3)^(2/x);(a , b , c >0)

Evaluate: lim_(x->0)(cot2x-cos e c2x)/x

Evaluate: lim_(x rarr 0)(a^(alphax)-b^(betax))/(x)

Evaluate : lim_(x->oo)(a x^2+b x+c)/(dx^2+e x+f)dot

Evaluate: undert(x rarr 0) lim (a^(x)-b^( x)) /x

f(x)={x ,xlt=0 1,x=0,t h e nfin d("lim")_(xvec0)f(x)x^2,x >0ife xi s t s

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

Column I ([.] denotes the greatest integer function), Column II ""("lim")_(xvec0)([100(sinx)/x]+[100(tanx)/x]) , p. 198 ("lim")_(xvec0)([100 x/(sinx)]+[100(tanx)/x]) , q. 199 ("lim")_(xvec0)([100(sin^(-1)x)/x]+[100(tan^(-1)x)/x]) , r. 200 ("lim")_(xvec0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x]) , s. 201

Let f(x) be a function defined on (-a ,a) with a > 0. Assume that f(x) is continuous at x=0a n d(lim)_(xvec0)(f(x)-f(k x))/x=alpha,w h e r ek in (0,1) then a. f^(prime)(0^+)=0 b. f^(prime)(0^-)=alpha/(1-k) c. f(x) is differentiable at x=0 d. f(x) is non-differentiable at x=0

f(x) is polynomial function of degree 6, which satisfies ("lim")_(x_vec_0)(1+(f(x))/(x^3))^(1/x)=e^2 and has local maximum at x=1 and local minimum at x=0a n dx=2. then 5f(3) is equal to