f(x)={x ,xlt=0 1,x=0,t h e nfin d("lim")_(xvec0)f(x)x^2,x >0ife xi s t s
The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2
Column I ([.] denotes the greatest integer function), Column II ""("lim")_(xvec0)([100(sinx)/x]+[100(tanx)/x]) , p. 198 ("lim")_(xvec0)([100 x/(sinx)]+[100(tanx)/x]) , q. 199 ("lim")_(xvec0)([100(sin^(-1)x)/x]+[100(tan^(-1)x)/x]) , r. 200 ("lim")_(xvec0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x]) , s. 201
Let f(x) be a function defined on (-a ,a) with a > 0. Assume that f(x) is continuous at x=0a n d(lim)_(xvec0)(f(x)-f(k x))/x=alpha,w h e r ek in (0,1) then a. f^(prime)(0^+)=0 b. f^(prime)(0^-)=alpha/(1-k) c. f(x) is differentiable at x=0 d. f(x) is non-differentiable at x=0
f(x) is polynomial function of degree 6, which satisfies ("lim")_(x_vec_0)(1+(f(x))/(x^3))^(1/x)=e^2 and has local maximum at x=1 and local minimum at x=0a n dx=2. then 5f(3) is equal to