Let `f(x)` be a twice-differentiable function and `f''(0)=2.` Then evaluate `lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).`
Text Solution
Verified by Experts
The given limit has 0/0 form. Using L'Hospital's rule, we have Limit= `underset(xto0)lim(2f'(x)-6f'(2x)+4f'(4x))/(2x)" "`(0/0 form) `=underset(xto0)lim(2f''(x)-12f''(2x)+16f''(4x))/(2)` (Using L'Hospital's rule) `=(6f''(0))/(2)=6`