Home
Class 12
MATHS
Let f(x) be a twice-differentiable funct...

Let `f(x)` be a twice-differentiable function and `f''(0)=2.` Then evaluate `lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).`

Text Solution

Verified by Experts

The given limit has 0/0 form.
Using L'Hospital's rule, we have
Limit= `underset(xto0)lim(2f'(x)-6f'(2x)+4f'(4x))/(2x)" "`(0/0 form)
`=underset(xto0)lim(2f''(x)-12f''(2x)+16f''(4x))/(2)`
(Using L'Hospital's rule)
`=(6f''(0))/(2)=6`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals

If f''(0)=k,kne0 , then the value of lim_(xto0)(2f(x)-3f(2x)+f(4x))/(x^2) is

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(xrarr2)(f(4)-f(x^2))/(x-2) equals

If f''(0)=k,kne0 then the value of lim_(xrarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

Let f(x) be a differentiable function and f'(4)=5 . Then underset(x to2)lim(f(4)-f(x^(2)))/(2(x-2)) equals-

If f(2)=4,f'(2)=4 , then evalute lim_(xto2)(xf(2)-2f(x))/(x-2) .

Let f:R to R be a differentiable function and f(1)=4 and f'(1)=2 , then the value of lim_(x to 1) int_(4)^(f(x))(2t)/(x-1)dt is -

Let f: RvecR be a differentiable function having f(2)=6,f^(prime)(2)=1/(48)dot Then evaluate lim_(xto2)int_6^(f(x))(4t^3)/(x-2)dt

If f (x) is differentiable and f'(4) =5, then the vlaue of lim_(xto2) (f(4) -f(x^(2)))/(x-2) is equal to-