Home
Class 12
MATHS
Let f(a)=g(a)=k and their nth derivative...

Let `f(a)=g(a)=k` and their `nth` derivatives exist and be not equal for some n.
If `lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4` then find the value of k.

Text Solution

Verified by Experts

`underset(xtoa)lim(f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4`
Clearly the LHS is of 0/0 form.
`:." "underset(xtoa)lim(f(a)g'(x)-f(a)-g(a)f'(x))/(g'(x)-f'(x))=4" "`(Using L'Hospital's rule)
`or" "underset(xtoa)lim(f(a)g'(a)-g(a)f'(a))/(g'(a)-f'(a))=4`
or `" "(kg'(a)-kf'(a))/(g'(a)-f'(a))=4`
or k=4
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(a)=g(a)=k and their n t h derivatives exist and are not equal for some ndot If. ("lim")_(x->a)(f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 . Find the value of k.

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

int [f(x)g"(x) - f"(x)g(x)]dx is

If the function f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x) , then the value of g'(1) is

If lim_(xtoa) {(f(x))/(g(x))} exists, then which one of the following correct ?

Let f and g be two functions defined by f(x)=(x)/(x+1), g(x) =(x)/(1-x) . If ( f o g ) ^(-1) (x) is equal to kx, then find the value of k.

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions f(x)=f(a-x) and g(x)+g(a-x)=a , then show that int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx . Hence find the value of int_(0)^(pi)xsinxdx .

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). Then find the function f(x) and g(x) .

If f (a) = 2 , f'(a) = 1, g (a) = -1 and g'(a) = 2 , show that lim_(x to a)(g(x)f(a)-f(x)g(a))/(x-a) = 5