Home
Class 12
MATHS
Evaluate lim(x to 0) (log(tan^(2)x)(tan^...

Evaluate `lim_(x to 0) (log_(tan^(2)x)(tan^(2)2x).`

Text Solution

Verified by Experts

`L=underset(xto0)lim(log(tan^(2)2x))/(log(tan^(2)x))" "`(`(oo)/(oo)` form)
Using L'Hospital's rule, we have
`L=underset(xto0)lim(((1)/(tan^(2)2x)2tan2xsec^(2)2x)xx2)/((1)/(tan^(2)x)2tanx.sec^(2)x)`
`=underset(xto0)lim(2((1)/(sin2xcos2x)))/(((1)/(sinxcosx)))=underset(xto0)lim(((1)/(sin2xcos2x)))/(((1)/(sin2x)))`
`=underset(xto0)lim(1)/(cos^(2)x)=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x->0)(log)_(tan^2x)(tan^2 2x)dot

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(x to 0) tan^-1x/x

Evaluate lim_(x to 0) ((x+4)/(2-x))^((x^(2)+2x-3)/(x-1))

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).

Evaluate lim_(x to 0) (tan(sgn(x)))/(sgn(x)) if exists.

Evaluate : lim_(x to 0) {tan(pi/4+x)}^(1/x)

Evaluate: lim_(x rarr 0) log(1+alphax)/(e^(2x)-1)

Evaluate lim_(xrarr0) tan(2x )/x

Evaluate : lim_(x rarr 0)log(1+5 x)/(e^(2x)-1)