Find the value of `alpha`
so that `("lim")_(xvec0)1/(x^2)(e^(alphax)-e^x-x)=3/2`
Text Solution
Verified by Experts
`underset(xto0)lim(e^(ax)-e^(x)-x)" "`(0/0 form) `=underset(xto0)lim(ae^(ax)-e^(x)-1)/(2x)" "`(Using L'Hospital's Rule) Since `Drto0" for "xto0,` So, `Nrto0" for "xto0` or `ae^(0)-e^(0)-1=0` or `a=2`
LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS
CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos
Similar Questions
Explore conceptually related problems
Find the value of alpha so that lim_(x->0)1/(x^2)(e^(alphax)-e^x-x)=3/2
Find the value of lim_(x to 3)e(1+sinpix)^(cotpix).
prove that lim_(x rarr 0) (1+2x)^(1/x)=e^(2)
Evaluate: lim_(x->0)(e^x-1-x)/(x^2)
Find the integral value of n for which lim_(x->0)(cos^2x-cosx-e^xcosx+e^x-(x^3)/2)/(x^n) is a finite nonzero number
Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).
Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4