Home
Class 12
MATHS
lim(xto1) (xsin(x-[x]))/(x-1), where [.]...

`lim_(xto1) (xsin(x-[x]))/(x-1)`, where `[.]` denotes the greatest integer function, is equal to

Text Solution

Verified by Experts

The correct Answer is:
C

`underset(xto1)lim(xsin(x-[x]))/(x-1)`
Now,`L.H.L.=underset(hto0)lim((1-h)sin(1-h-[1-h]))/((1-h)-1)`
`=underset(hto0)lim((1-h)sin(1-h))/(-h)=-oo`
`R.H.L.=underset(hto0)lim((1+h)sin(1+h-[1+h]))/((1+h)-1)=underset(hto0)lim((1+h)sinh)/(h)=1`
Hence, the limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

lim_(xrarr2)(-1)^x (where [x] is the greatest integer function ), is equal to

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xgt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then which options are correct?

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(n->oo)[(2n)/(2n^2-1)cos((n+1)/(2n-1))-n/(1-2n)dot(n(-...

    Text Solution

    |

  2. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  3. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  4. ("lim")(xvecoo)(x^2tan1/x)/(sqrt(8x^2+7x+1))i se q u a lto: -1/(2sqrt...

    Text Solution

    |

  5. If lim(x→0) ​ (x^asin^b x)/(sin(x^c)), where a , b , c in ...

    Text Solution

    |

  6. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  7. lim(x->1)(1-x^2)/(sin2pix) is equal to (a)1/(2pi) (b) -1/pi (...

    Text Solution

    |

  8. ("lim")(xto0)1/xcos^(-1)((1-x^2)/(1+x^2)) is equals to (a)1 (b) 0 ...

    Text Solution

    |

  9. lim(y->0)((x+y)sec(x+y)-xsecx)/y is equal to (a) secx(xtanx+1) (b) x...

    Text Solution

    |

  10. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  11. ("lim")(ntooo)sum(x=1)^(20)cos^(2n)(x-10) is equal to

    Text Solution

    |

  12. lim(xto-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^(2)) is equal...

    Text Solution

    |

  13. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  14. The value of lim(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] repre...

    Text Solution

    |

  15. The value of ("lim")(x->a)sqrt(a^2-x^2)cot(pi/2sqrt((a-x)/(a+x))) is (...

    Text Solution

    |

  16. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  17. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  18. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  19. The value of lim(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is (a)4 (b) ...

    Text Solution

    |

  20. lim(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 ...

    Text Solution

    |