Home
Class 12
MATHS
("lim")(xvecoo)(x^2tan1/x)/(sqrt(8x^2+7x...

`("lim")_(xvecoo)(x^2tan1/x)/(sqrt(8x^2+7x+1))i se q u a lto:` `-1/(2sqrt(2)` (b) `1/(2sqrt(2))` `1/(sqrt(2))` (d) does not exist

A

`-1/(2sqrt2)`

B

`1/(2sqrt2)`

C

2

D

`1//4`

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(xtooo)lim(x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1))=underset(xtooo)lim(x^(2)"tan"(1)/(x) )/(-xsqrt(8+(7)/(x)+(1)/(x^(2))))`
`=underset(xtooo)lim("tan"(1)/(x) )/((1)/(x)sqrt(8+(7)/(x)+(1)/(x^(2))))=-(1)/(2sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

The value of (lim)_((nvecoo)(tan^(-1)x))) is equal to -1 (b) pi/2 (c) -1/(sqrt(2)) (d) 1/(sqrt(2))

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (a) (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) (c) 1/(2xsqrt(x^2-1)) (d) none of these

Factorise : (sqrt(2)-1)x^(2)+2sqrt(2)x+(sqrt(2)+1)

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2)) < x < 1/(sqrt(2))

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

lim_(x->0)("cos"(tanx)-cosx)/(x^4)i se q u a lto 1/6 (b) -1/3 (c) 1/2 (d) 1

The value of lim_(x->1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(sin^(-1)x))) is (a) -1/(sqrt(2)) (b) 1/(sqrt(2)) (c) sqrt(2) (d) -sqrt(2)

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) (c) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  2. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  3. ("lim")(xvecoo)(x^2tan1/x)/(sqrt(8x^2+7x+1))i se q u a lto: -1/(2sqrt...

    Text Solution

    |

  4. If lim(x→0) ​ (x^asin^b x)/(sin(x^c)), where a , b , c in ...

    Text Solution

    |

  5. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  6. lim(x->1)(1-x^2)/(sin2pix) is equal to (a)1/(2pi) (b) -1/pi (...

    Text Solution

    |

  7. ("lim")(xto0)1/xcos^(-1)((1-x^2)/(1+x^2)) is equals to (a)1 (b) 0 ...

    Text Solution

    |

  8. lim(y->0)((x+y)sec(x+y)-xsecx)/y is equal to (a) secx(xtanx+1) (b) x...

    Text Solution

    |

  9. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  10. ("lim")(ntooo)sum(x=1)^(20)cos^(2n)(x-10) is equal to

    Text Solution

    |

  11. lim(xto-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^(2)) is equal...

    Text Solution

    |

  12. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  13. The value of lim(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] repre...

    Text Solution

    |

  14. The value of ("lim")(x->a)sqrt(a^2-x^2)cot(pi/2sqrt((a-x)/(a+x))) is (...

    Text Solution

    |

  15. lim(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest...

    Text Solution

    |

  16. The value of lim(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

    Text Solution

    |

  17. lim(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

    Text Solution

    |

  18. The value of lim(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is (a)4 (b) ...

    Text Solution

    |

  19. lim(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 ...

    Text Solution

    |

  20. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |