Home
Class 12
MATHS
lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (wh...

`lim_(xto0) [(1-e^(x))(sinx)/(|x|)]` is (where `[.]` represents the greatest integer function )

A

1

B

2

C

3

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(xto0^(+))lim[(1-e^(x))(sinx)/(|x|)]=underset(xto0^(+))lim[(0^(-))(sinx)/(x)]=[0^(-)]=-1.`
`underset(xto0^(-))lim[(1-e^(x))(sinx)/(|x|)]=underset(xto0^(-))lim[(0^(+))(sinx)/(-x)]=[0^(-)]=-1`
Hence, `underset(xto0)lim[(1-e^(x))(sinx)/(|x|)]=-1.`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

The value of lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] represents the greatest integral function) is (a) 199 (b) 198 (c) 0 (d) none of these

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

CENGAGE PUBLICATION-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is (a)4 (b) ...

    Text Solution

    |

  2. lim(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 ...

    Text Solution

    |

  3. lim(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greates...

    Text Solution

    |

  4. Evaluate lim(xto0) (x(e^(x)-1))/(1-cosx) is equal to

    Text Solution

    |

  5. If f(x)=lim(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal...

    Text Solution

    |

  6. lim(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x ...

    Text Solution

    |

  7. The value of lim(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x))...

    Text Solution

    |

  8. ("lim")(x->0)(sin(x^2))/(1n(cos(2x^2-x))) is equal to (a) 2 (b) -2 ...

    Text Solution

    |

  9. lim(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

    Text Solution

    |

  10. lim(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  11. The value of lim(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^...

    Text Solution

    |

  12. ("lim")(xto1)(n x^(n+1)-(n+1)x^n+1)/((e^x-e)sinpix),\ where \n=100 , ...

    Text Solution

    |

  13. lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

    Text Solution

    |

  14. The value of lim(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

    Text Solution

    |

  15. The value of lim(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is (a)1/2 ...

    Text Solution

    |

  16. If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo then lim(xtoa){f(x)}^(g(x))=e^...

    Text Solution

    |

  17. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then

    Text Solution

    |

  18. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  19. ("lim")(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e ...

    Text Solution

    |

  20. The value of lim(x->1)(2-x)^(tan((pix)/2)) is (a)e^(-2/pi) (b) e^...

    Text Solution

    |